PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

简介: PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

全文下载链接:http://tecdat.cn?p=26519


一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 天。可以使用 10 天的历史数据集以在线学习的方式重新训练网络点击文末“阅读原文”获取完整代码数据


数据集是天然气价格查看文末了解数据获取方式 ,具有以下特征:

  • 日期(从 1997 年到 2020 年)- 为 每天数据
  • 以元计的天然气价格

读取数据并将日期作为索引处理


# 固定日期时间并设置为索引
dftet.index = pd.DatetimeIndex
# 用NaN来填补缺失的日期(以后再补)
dargt = f\_arget.reindex(ales, fill\_value=np.nan)
# 检查
print(d_tret.dtypes)
df_aget.head(10)

处理缺失的日期


# 数据归纳(使用 "向前填充"--根据之前的值进行填充)。
dfaet.fillna(method='ffill', inplace=True)


特征工程

因为我们正在使用深度学习,所以特征工程将是最小的。

  • One-hot 编码“is_weekend”和星期几
  • 添加行的最小值和最大值(可选)

通过设置固定的上限(例如 30 倍中位数)修复异常高的值

# 在df_agg中修复任何非常高的值 - 归一化为中值
for col in co\_to\_fi_ies:
    dgt\[col\] = fixnaes(dftget\[col\])

添加滞后

# 增加每周的滞后性
df\_tret = addag(d\_aget, tare\_arble='Price', step\_ak=7)
# 增加30天的滞后性
df\_get = ad\_ag(df\_ret, tagt\_able='Price', sep_bck=30)

# 合并后删除任何有NA值的列
d_gt.dropna(inplace=True)
print(dfget.shape)
tie\_nx = df\_art.index

归一化


  • 归一化或最小-最大尺度(需要减小较宽的数值范围,以便 LSTM 收敛)。

# 标准化训练数据\[0, 1\]

sclr = prcsing.Maxcaer((0,1))

准备训练数据集

  • 时间步数 = 1
  • 时间步数 = nsteout小时数(预测范围)

在这里,我们将数据集从 [samples, features] 转换为 [samples, steps, features] - 与算法 LSTM 一起使用的维度。下面的序列拆分使用“walk-forward”方法来创建训练数据集。

# 多变量多步骤编码器-解码器 lstm 示例
# 选择一个时间步骤的数量
# 维度变成\[样本数、步骤、特征\]
X, y = splices(datasformed, n\_ep\_in, n\_ep\_out)
# 分成训练/测试
et_ut = int(0.05*X.shpe\[0\])
X\_tain, X\_est, ytrain, y\_tst = X\[:-tetaont\], X\[-tes\_ont:\], y\[:-tstmunt\], y\[-es_unt:\]

训练模型

这利用了长期短期记忆算法。

# 实例化和训练模型
print
model = cre\_odel(n\_tps\_in, n\_tep\_out, n\_feures, lerig_rate=0.0001)

探索预测

%%time
#加载特定的模型
model = lod\_id\_del(
                           n_stepin, 
                           n\_sep\_out,
                           X_tan.shape\[2\])

# 展示对一个样本的预测
testle_ix = 0
yat = mdel.predict(X\_tet\[est\_amle\_ix\].reshape((1,n\_sep_in, nfatues)),erbose=Tue)

# 计算这一个测试样本的均方根误差
rmse = math.sqrt

plot\_result(yhat\[0\], scaler, saved\_columns)

点击标题查阅往期内容


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析


01

02

03

04


平均 RMSE

# 收集所有的测试RMSE值
rmesores = \[\]
for i in range:
    yhat = oel.predict(Xtet\[i\].reshape((1, \_stes\_in, _faues)), verbose=False)
    # 计算这一个测试样本的均方根误差
    rmse = math.sqrt(mensqaerror(yhat\[0\], y_test\[i\]))

训练整个数据集

#在所有数据上实例化和训练模型
modl\_l = cret\_mel(nsep\_in, steps\_ou, n_etures,learnnrate=0.0001)
mde\_all, ru\_ime, weighfie = trin(md_all, X, y, batcsie=16, neohs=15)

样本内预测

注意:模型已经“看到”或训练了这些样本,但我们希望确保它与预测一致。如果它做得不好,模型可能会欠拟合或过拟合。要尝试的事情:

  • 增加或减少批量大小
  • 增加或减少学习率
  • 更改网络中 LSTM 的隐藏层数
# 获得10个步
da\_cent = dfret.iloc\[-(ntes\_in*2):-nsps_in\]
# 标准化
dta_ectormed = sclr.rasfrm(daareent)
# 维度变成\[样本数、步骤、特征\]
n_res = dtcentorm.shape\[1\]
X\_st = data\_recn\_trsrd.reshape((1, n\_tps\_n, n\_feares))
# 预测
foecst = mlll.predict(X_past)
# 扩大规模并转换为DF
forcast = forast.resape(n_eaturs))
foect = saer.inese_transform(forecast)
fuure\_dtes  df\_targe.ide\[-n\_steps\_out:\]
# 绘图
histrcl = d_aet.ioc\[-100:, :1\] # 获得历史数据的X步回溯
for i in ane(oisae\[1\]):
    fig = plt.igre(fgze=(10,5))
    
    # 绘制df_agg历史数据
    plt.plot(.iloc\[:,i\]
    
    # 绘制预测图
    plt.plot(frc.iloc\[:,i\])
    # 标签和图例
    plt.xlabel

预测样本外

# 获取最后10步
dtareent = dfargt.iloc\[-nstpsin:\]。
# 标准化
dta\_ecntranfomed = scaler.trasorm(data\_recent)
# 预测
forct = meall.rict(_past)
# 扩大规模并转换为DF
foreast = foecs.eshape(\_seps\_ut, n_eatures))
foreast = sclerinvers_tranorm(focast)
futur\_daes = pd.daternge(df\_argetinex\[-1\], priods=step_out, freq='D')
# 绘图
htrical = df_taet.iloc\[-100:, :1\] # 获得历史数据的X步回溯
# 绘制预测图
    plt.plot(fectoc\[:,i\])

相关文章
|
24天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
164 80
|
3月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
483 2
|
12天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
18天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
20天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
2月前
|
存储 数据采集 数据库
用 Python 爬取淘宝商品价格信息时需要注意什么?
使用 Python 爬取淘宝商品价格信息时,需注意法律和道德规范,遵守法律法规和平台规定,避免非法用途。技术上,可选择 Selenium 和 Requests 库,处理反爬措施如 IP 限制、验证码识别和请求频率控制。解析页面数据时,确定数据位置并清洗格式。数据存储可选择 CSV、Excel、JSON 或数据库,定期更新并去重。还需进行错误处理和日志记录,确保爬虫稳定运行。
|
2月前
|
数据采集 Web App开发 iOS开发
如何利用 Python 的爬虫技术获取淘宝天猫商品的价格信息?
本文介绍了使用 Python 爬虫技术获取淘宝天猫商品价格信息的两种方法。方法一使用 Selenium 模拟浏览器操作,通过定位页面元素获取价格;方法二使用 Requests 和正则表达式直接请求页面内容并提取价格。每种方法都有详细步骤和代码示例,但需注意反爬措施和法律法规。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。