PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

简介: PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子

全文下载链接:http://tecdat.cn?p=26519


一个简单的编码器-解码器LSTM神经网络应用于时间序列预测问题:预测天然气价格,预测范围为 10 天。“进入”时间步长也设置为 10 天。) 只需要 10 天来推断接下来的 10 天。可以使用 10 天的历史数据集以在线学习的方式重新训练网络点击文末“阅读原文”获取完整代码数据


数据集是天然气价格查看文末了解数据获取方式 ,具有以下特征:

  • 日期(从 1997 年到 2020 年)- 为 每天数据
  • 以元计的天然气价格

读取数据并将日期作为索引处理


# 固定日期时间并设置为索引
dftet.index = pd.DatetimeIndex
# 用NaN来填补缺失的日期(以后再补)
dargt = f\_arget.reindex(ales, fill\_value=np.nan)
# 检查
print(d_tret.dtypes)
df_aget.head(10)

处理缺失的日期


# 数据归纳(使用 "向前填充"--根据之前的值进行填充)。
dfaet.fillna(method='ffill', inplace=True)


特征工程

因为我们正在使用深度学习,所以特征工程将是最小的。

  • One-hot 编码“is_weekend”和星期几
  • 添加行的最小值和最大值(可选)

通过设置固定的上限(例如 30 倍中位数)修复异常高的值

# 在df_agg中修复任何非常高的值 - 归一化为中值
for col in co\_to\_fi_ies:
    dgt\[col\] = fixnaes(dftget\[col\])

添加滞后

# 增加每周的滞后性
df\_tret = addag(d\_aget, tare\_arble='Price', step\_ak=7)
# 增加30天的滞后性
df\_get = ad\_ag(df\_ret, tagt\_able='Price', sep_bck=30)

# 合并后删除任何有NA值的列
d_gt.dropna(inplace=True)
print(dfget.shape)
tie\_nx = df\_art.index

归一化


  • 归一化或最小-最大尺度(需要减小较宽的数值范围,以便 LSTM 收敛)。

# 标准化训练数据\[0, 1\]

sclr = prcsing.Maxcaer((0,1))

准备训练数据集

  • 时间步数 = 1
  • 时间步数 = nsteout小时数(预测范围)

在这里,我们将数据集从 [samples, features] 转换为 [samples, steps, features] - 与算法 LSTM 一起使用的维度。下面的序列拆分使用“walk-forward”方法来创建训练数据集。

# 多变量多步骤编码器-解码器 lstm 示例
# 选择一个时间步骤的数量
# 维度变成\[样本数、步骤、特征\]
X, y = splices(datasformed, n\_ep\_in, n\_ep\_out)
# 分成训练/测试
et_ut = int(0.05*X.shpe\[0\])
X\_tain, X\_est, ytrain, y\_tst = X\[:-tetaont\], X\[-tes\_ont:\], y\[:-tstmunt\], y\[-es_unt:\]

训练模型

这利用了长期短期记忆算法。

# 实例化和训练模型
print
model = cre\_odel(n\_tps\_in, n\_tep\_out, n\_feures, lerig_rate=0.0001)

探索预测

%%time
#加载特定的模型
model = lod\_id\_del(
                           n_stepin, 
                           n\_sep\_out,
                           X_tan.shape\[2\])

# 展示对一个样本的预测
testle_ix = 0
yat = mdel.predict(X\_tet\[est\_amle\_ix\].reshape((1,n\_sep_in, nfatues)),erbose=Tue)

# 计算这一个测试样本的均方根误差
rmse = math.sqrt

plot\_result(yhat\[0\], scaler, saved\_columns)

点击标题查阅往期内容


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析


01

02

03

04


平均 RMSE

# 收集所有的测试RMSE值
rmesores = \[\]
for i in range:
    yhat = oel.predict(Xtet\[i\].reshape((1, \_stes\_in, _faues)), verbose=False)
    # 计算这一个测试样本的均方根误差
    rmse = math.sqrt(mensqaerror(yhat\[0\], y_test\[i\]))

训练整个数据集

#在所有数据上实例化和训练模型
modl\_l = cret\_mel(nsep\_in, steps\_ou, n_etures,learnnrate=0.0001)
mde\_all, ru\_ime, weighfie = trin(md_all, X, y, batcsie=16, neohs=15)

样本内预测

注意:模型已经“看到”或训练了这些样本,但我们希望确保它与预测一致。如果它做得不好,模型可能会欠拟合或过拟合。要尝试的事情:

  • 增加或减少批量大小
  • 增加或减少学习率
  • 更改网络中 LSTM 的隐藏层数
# 获得10个步
da\_cent = dfret.iloc\[-(ntes\_in*2):-nsps_in\]
# 标准化
dta_ectormed = sclr.rasfrm(daareent)
# 维度变成\[样本数、步骤、特征\]
n_res = dtcentorm.shape\[1\]
X\_st = data\_recn\_trsrd.reshape((1, n\_tps\_n, n\_feares))
# 预测
foecst = mlll.predict(X_past)
# 扩大规模并转换为DF
forcast = forast.resape(n_eaturs))
foect = saer.inese_transform(forecast)
fuure\_dtes  df\_targe.ide\[-n\_steps\_out:\]
# 绘图
histrcl = d_aet.ioc\[-100:, :1\] # 获得历史数据的X步回溯
for i in ane(oisae\[1\]):
    fig = plt.igre(fgze=(10,5))
    
    # 绘制df_agg历史数据
    plt.plot(.iloc\[:,i\]
    
    # 绘制预测图
    plt.plot(frc.iloc\[:,i\])
    # 标签和图例
    plt.xlabel

预测样本外

# 获取最后10步
dtareent = dfargt.iloc\[-nstpsin:\]。
# 标准化
dta\_ecntranfomed = scaler.trasorm(data\_recent)
# 预测
forct = meall.rict(_past)
# 扩大规模并转换为DF
foreast = foecs.eshape(\_seps\_ut, n_eatures))
foreast = sclerinvers_tranorm(focast)
futur\_daes = pd.daternge(df\_argetinex\[-1\], priods=step_out, freq='D')
# 绘图
htrical = df_taet.iloc\[-100:, :1\] # 获得历史数据的X步回溯
# 绘制预测图
    plt.plot(fectoc\[:,i\])

相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
34 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
2天前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
42 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
|
3天前
|
机器学习/深度学习 人工智能 算法
【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 '美式足球', '棒球', '篮球', '台球', '保龄球', '板球', '足球', '高尔夫球', '曲棍球', '冰球', '橄榄球', '羽毛球', '乒乓球', '网球', '排球'等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高的模型文件。再使用Django开发Web网页端可视化界面平台,实现用户上传一张球类图片识别其名称。
32 7
【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
|
10天前
|
机器学习/深度学习 调度 Python
SOFTS: 时间序列预测的最新模型以及Python使用示例
这是2024年4月《SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion》中提出的新模型,采用集中策略来学习不同序列之间的交互,从而在多变量预测任务中获得最先进的性能。
34 4
|
6天前
|
Python
在Python中,`range()`函数生成一个整数序列,用于循环迭代。
【6月更文挑战第19天】`Python`的`range()`函数生成整数序列,用于迭代。它接受`start`(默认0)、`stop`(不包含,右开)和`step`(默认1)参数。在`for`循环中,`range(5)`会输出0到4。若要包含结束值,需将`stop`设为`end+1`,如`range(1, 6)`将输出1到5。
19 1
|
11天前
|
存储 索引 Python
【Python列表解锁】:掌握序列精髓,驾驭动态数据集合
【Python列表解锁】:掌握序列精髓,驾驭动态数据集合
|
14天前
|
机器学习/深度学习 PyTorch TensorFlow
|
1月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
12天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
12天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】