【MATLAB】EWT_ MFE_SVM_LSTM 神经网络时序预测算法

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
简介: 【MATLAB】EWT_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

EWT_MFE_SVM_LSTM神经网络时序预测算法结合了经验小波变换(EWT)、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的优点,旨在实现对复杂时间序列数据的高精度预测。以下是关于该算法的详细介绍:

1. 经验小波变换(EWT)

  • EWT是一种自适应的小波变换方法,它根据时间序列数据的特性来构造小波。与传统的小波变换相比,EWT不需要预先定义小波基函数,而是根据数据本身来构造小波,因此更加灵活和自适应。
  • EWT通过将时间序列数据分解为一系列小波系数,能够捕捉到数据中的不同频率和尺度成分。这些小波系数提供了对原始数据的多尺度表示,有助于后续的特征提取和预测。

2. 多尺度特征提取(MFE)

  • MFE技术用于从EWT得到的小波系数中提取多尺度特征。这些特征可能包括统计特性、频域特性、时域特性等,它们共同描述了数据在不同尺度上的行为。
  • 通过多尺度特征提取,算法能够捕捉到原始数据中的局部和全局模式,为后续的预测模型提供丰富而具有代表性的信息。

3. 支持向量机(SVM)

  • SVM是一种常用的监督学习算法,特别适用于处理分类和回归问题。在时序预测中,SVM可以利用历史数据和MFE提取的多尺度特征来训练预测模型。
  • 该模型通过寻找最优超平面来最大化分类间隔,从而实现数据的分类或回归。SVM在处理高维数据和非线性关系方面表现出色,有助于提高预测的准确性。

4. 长短期记忆神经网络(LSTM)

  • LSTM是一种特殊的循环神经网络(RNN),特别擅长处理长时间序列数据。它通过内部的门控机制和存储单元来捕捉序列中的长期依赖关系。
  • 在EWT_MFE_SVM_LSTM算法中,LSTM被用来进一步优化SVM的预测结果。具体而言,将EWT得到的小波系数和MFE提取的多尺度特征作为LSTM的输入,通过LSTM的学习和预测,实现对原始时间序列的更精确预测。

综上所述,EWT_MFE_SVM_LSTM神经网络时序预测算法结合了经验小波变换、多尺度特征提取、聚类后展开支持向量机和长短期记忆神经网络的优点,实现了对原始时间序列数据的高精度和稳定预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

【MATLAB】EWT_ MFE_SVM_LSTM 神经网络时序预测算法

https://mbd.pub/o/bread/ZZqXl59s

MATLAB 228 种科研算法及 23 期科研绘图合集(2024 年 2 月 21 号更新版)

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


目录
相关文章
|
9天前
|
机器学习/深度学习 算法 Python
matlab思维进化算法优化BP神经网络
matlab思维进化算法优化BP神经网络
|
10天前
|
机器学习/深度学习 数据采集 传感器
基于极限学习机和BP神经网络的半监督分类算法
基于极限学习机(Extreme Learning Machine, ELM)和反向传播(Backpropagation, BP)神经网络的半监督分类算法,旨在结合两者的优势:​**ELM的快速训练能力**和**BP的梯度优化能力**,同时利用少量标注数据和大量未标注数据提升分类性能。
38 6
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
2月前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
9月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
361 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
9月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
223 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
9月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
338 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)