【MATLAB】EWT_ MFE_SVM_LSTM 神经网络时序预测算法

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【MATLAB】EWT_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

EWT_MFE_SVM_LSTM神经网络时序预测算法结合了经验小波变换(EWT)、多尺度特征提取(MFE)、支持向量机(SVM)和长短期记忆神经网络(LSTM)的优点,旨在实现对复杂时间序列数据的高精度预测。以下是关于该算法的详细介绍:

1. 经验小波变换(EWT)

  • EWT是一种自适应的小波变换方法,它根据时间序列数据的特性来构造小波。与传统的小波变换相比,EWT不需要预先定义小波基函数,而是根据数据本身来构造小波,因此更加灵活和自适应。
  • EWT通过将时间序列数据分解为一系列小波系数,能够捕捉到数据中的不同频率和尺度成分。这些小波系数提供了对原始数据的多尺度表示,有助于后续的特征提取和预测。

2. 多尺度特征提取(MFE)

  • MFE技术用于从EWT得到的小波系数中提取多尺度特征。这些特征可能包括统计特性、频域特性、时域特性等,它们共同描述了数据在不同尺度上的行为。
  • 通过多尺度特征提取,算法能够捕捉到原始数据中的局部和全局模式,为后续的预测模型提供丰富而具有代表性的信息。

3. 支持向量机(SVM)

  • SVM是一种常用的监督学习算法,特别适用于处理分类和回归问题。在时序预测中,SVM可以利用历史数据和MFE提取的多尺度特征来训练预测模型。
  • 该模型通过寻找最优超平面来最大化分类间隔,从而实现数据的分类或回归。SVM在处理高维数据和非线性关系方面表现出色,有助于提高预测的准确性。

4. 长短期记忆神经网络(LSTM)

  • LSTM是一种特殊的循环神经网络(RNN),特别擅长处理长时间序列数据。它通过内部的门控机制和存储单元来捕捉序列中的长期依赖关系。
  • 在EWT_MFE_SVM_LSTM算法中,LSTM被用来进一步优化SVM的预测结果。具体而言,将EWT得到的小波系数和MFE提取的多尺度特征作为LSTM的输入,通过LSTM的学习和预测,实现对原始时间序列的更精确预测。

综上所述,EWT_MFE_SVM_LSTM神经网络时序预测算法结合了经验小波变换、多尺度特征提取、聚类后展开支持向量机和长短期记忆神经网络的优点,实现了对原始时间序列数据的高精度和稳定预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

【MATLAB】EWT_ MFE_SVM_LSTM 神经网络时序预测算法

https://mbd.pub/o/bread/ZZqXl59s

MATLAB 228 种科研算法及 23 期科研绘图合集(2024 年 2 月 21 号更新版)

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


目录
相关文章
|
7天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
7天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
84 14
|
7天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
15天前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
|
23天前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
137 0
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。

热门文章

最新文章