【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

TVF-EMD_MFE_SVM_LSTM 神经网络时序预测算法是一种结合了变分模态分解(TVF-EMD)、多尺度特征提取(MFE)、聚类后展开支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。下面是对该算法的详细介绍:

1. 变分模态分解(TVF-EMD)

  • TVF-EMD 是一种自适应信号分解方法,它将复杂时间序列分解为多个固有模态函数(IMF)和一个残差项。TVF-EMD 是经验模态分解(EMD)的一种变体,通过引入变分框架来优化分解过程,使得分解更加精确和稳定。
  • 通过 TVF-EMD,算法能够有效地提取时间序列中的复杂模式和趋势,为后续的预测提供更准确的数据表示。每个 IMF 代表了原始时间序列中的一个特定频率或尺度的成分,而残差项则包含了剩余的趋势或噪声。

2. 多尺度特征提取(MFE)

  • MFE 技术用于从 TVF-EMD 分解得到的 IMF 和残差项中提取多尺度特征。这些特征包括统计特性、频域特性、时域特性等,能够全面描述每个 IMF 和残差项在不同尺度上的行为。
  • 通过 MFE,算法能够捕捉到时间序列中的局部和全局模式,为后续的预测模型提供更丰富、更有代表性的信息。这些特征可以作为预测模型的输入,帮助模型更好地理解和预测时间序列的变化。

3. 支持向量机(SVM)

  • SVM 是一种常用的监督学习算法,适用于处理分类和回归问题。在 TVF-EMD_MFE_SVM_LSTM 算法中,SVM 被用来初步预测每个 IMF 和残差项的未来值。
  • 利用历史数据和 MFE 提取的多尺度特征,SVM 可以训练多个独立的预测模型,每个模型对应一个 IMF 或残差项。这些模型能够捕捉到数据中的非线性关系,并为后续的 LSTM 模型提供初始预测结果。

4. 长短期记忆神经网络(LSTM)

  • LSTM 是一种特殊的循环神经网络(RNN),特别适合处理具有长期依赖关系的时间序列数据。在 TVF-EMD_MFE_SVM_LSTM 算法中,LSTM 用于进一步优化 SVM 的初步预测结果。
  • LSTM 接收 SVM 的预测结果和 MFE 提取的多尺度特征作为输入,通过其内部的记忆单元和门控机制,学习到时间序列中的长期依赖关系。LSTM 模型可以对每个 IMF 和残差项进行更精确的预测。

综上所述,TVF-EMD_MFE_SVM_LSTM 神经网络时序预测算法结合了变分模态分解、多尺度特征提取、支持向量机和长短期记忆神经网络的优点,旨在实现对复杂时间序列数据的高精度预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法

https://mbd.pub/o/bread/ZZqXl59w

MATLAB 228 种科研算法及 23 期科研绘图合集(2024 年 2 月 21 号更新版)

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


目录
相关文章
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
4天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
5月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
67 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
5月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
73 0
|
5月前
|
机器学习/深度学习 自然语言处理 TensorFlow