【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

SVMD_MFE_SVM_LSTM神经网络时序预测算法结合了单变量分解(SVMD)、多尺度特征提取(MFE)、聚类后展开支持向量机(SVM)和长短期记忆神经网络(LSTM)的优点,旨在实现对时间序列数据的高精度预测。以下是对该算法的详细介绍:

  1. 单变量分解(SVMD)
  • SVMD是一种针对单变量时间序列的分解方法。它旨在将原始时间序列分解为多个成分或模态,以便更好地理解和预测其行为。这种分解可能基于矩阵分解技术,如奇异值分解(SVD),或其他适合单变量时间序列分解的技术。
  • 通过SVMD,可以将原始时间序列转化为多个组成部分,每个组分可能代表不同的频率、趋势或周期性行为。
  1. 多尺度特征提取(MFE)
  • MFE技术用于从SVMD分解得到的各个成分中提取多尺度特征。这些特征可能包括统计特性、频域特性、时域特性等,能够全面描述每个成分在不同尺度上的行为。
  • 通过MFE,算法能够捕捉到时间序列中的局部和全局模式,为后续的预测模型提供更丰富、更有代表性的信息。
  1. 支持向量机(SVM)
  • SVM是一种常用的监督学习算法,特别适用于处理分类和回归问题。在SVMD_MFE_SVM_LSTM算法中,SVM用于初步预测SVMD分解后每个成分的未来值。
  • 利用历史数据和MFE提取的多尺度特征,SVM可以训练多个独立的预测模型,每个模型对应一个分解成分。这些模型能够捕捉到数据中的非线性关系,并为后续的LSTM模型提供初始预测结果。
  1. 长短期记忆神经网络(LSTM)
  • LSTM是一种特殊的循环神经网络(RNN),特别适合处理具有长期依赖关系的时间序列数据。在SVMD_MFE_SVM_LSTM算法中,LSTM用于进一步优化SVM的初步预测结果。
  • LSTM接收SVM的预测结果和MFE提取的多尺度特征作为输入,通过其内部的记忆单元和门控机制,学习到时间序列中的长期依赖关系。LSTM模型可以对每个分解成分进行更精确的预测。

综上所述,SVMD_MFE_SVM_LSTM神经网络时序预测算法结合了单变量分解、多尺度特征提取、支持向量机和长短期记忆神经网络的优点,旨在实现对时间序列数据的高精度预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法

https://mbd.pub/o/bread/ZZqXl59v

MATLAB 228 种科研算法及 23 期科研绘图合集(2024 年 2 月 21 号更新版)

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
12 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
15天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
12天前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
18 0
|
2天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第23天】在数字时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将探讨网络安全漏洞、加密技术和安全意识等方面的内容,以帮助读者更好地了解如何保护自己的网络安全。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,我们将为读者提供一些实用的建议和技巧,以增强他们的网络安全防护能力。
|
5天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第20天】在信息技术飞速发展的今天,网络安全和信息安全问题日益突出。本文将围绕网络安全漏洞、加密技术和安全意识等方面进行深入探讨,旨在提高读者对网络安全的认识和重视程度。文章首先介绍了网络安全漏洞的概念、分类和成因,然后详细阐述了加密技术的基本原理和应用,最后强调了提高个人和组织安全意识的重要性。通过本文的学习,读者将能够更好地理解网络安全的重要性,掌握一些实用的防护措施,并在日常生活中提高自己的安全意识。
47 10
|
2天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第23天】在数字化时代,网络安全和信息安全已经成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全和信息安全的基本知识。通过本文的学习,您将能够更好地保护自己的个人信息和数据安全。
|
2天前
|
监控 安全 网络协议
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第24天】在数字化时代,网络安全和信息安全已经成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的知识,并提供一些实用的技巧和建议,帮助读者提高自己的网络安全防护能力。
9 4
|
2天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:从漏洞到加密,保护数据的关键步骤
【10月更文挑战第24天】在数字化时代,网络安全和信息安全是维护个人隐私和企业资产的前线防线。本文将探讨网络安全中的常见漏洞、加密技术的重要性以及如何通过提高安全意识来防范潜在的网络威胁。我们将深入理解网络安全的基本概念,学习如何识别和应对安全威胁,并掌握保护信息不被非法访问的策略。无论你是IT专业人士还是日常互联网用户,这篇文章都将为你提供宝贵的知识和技能,帮助你在网络世界中更安全地航行。