CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

简介: CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别


目录

基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

数据集介绍

输出结果

使用model.ckpt-6000模型预测

预测错误的只有一个案例,如下所示

训练结果

核心代码


基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

数据集介绍

数据下载Dogs vs. Cats Redux: Kernels Edition | Kaggle

    train文件夹里有25000张狗和猫的图片。这个文件夹中的每个图像都有标签作为文件名的一部分。测试文件夹包含12500张图片,根据数字id命名。对于测试集中的每个图像,您应该预测图像是一只狗的概率(1 =狗,0 =猫)。

输出结果

使用model.ckpt-6000模型预测

预测错误的只有一个案例,如下所示

序号 使用model.ckpt-4000模型预测 使用model.ckpt-6000模型预测 使用model.ckpt-8000模型预测 使用model.ckpt-10000模型预测 使用model.ckpt-12000模型预测
1 cat cat (1).jpg 猫的概率 0.631 cat (1).jpg 狗的概率 0.740 cat (1).jpg 狗的概率 0.781 cat (1).jpg 狗的概率 0.976 cat (1).jpg 狗的概率 0.991
2 cat (10).jpg 狗的概率 0.697 cat (10).jpg 猫的概率 0.566 cat (10).jpg 猫的概率 0.925 cat (10).jpg 猫的概率 0.925 cat (10).jpg 猫的概率 0.816
3 cat (11).jpg 猫的概率 0.927 cat (11).jpg 猫的概率 0.988 cat (11).jpg 猫的概率 1.000 cat (11).jpg 猫的概率 1.000 cat (11).jpg 猫的概率 1.000
4 cat (12).jpg 狗的概率 0.746 cat (12).jpg 狗的概率 0.723 cat (12).jpg 狗的概率 0.822 cat (12).jpg 狗的概率 0.998 cat (12).jpg 狗的概率 1.000
5 cat (13).jpg 猫的概率 0.933 cat (13).jpg 猫的概率 0.983 cat (13).jpg 猫的概率 0.997 cat (13).jpg 猫的概率 1.000 cat (13).jpg 猫的概率 1.000
6 cat (14).jpg 狗的概率 0.657 cat (14).jpg 猫的概率 0.597 cat (14).jpg 狗的概率 0.758 cat (14).jpg 狗的概率 0.695 cat (14).jpg 猫的概率 0.544
7 cat (15).jpg 狗的概率 0.578 cat (15).jpg 狗的概率 0.535 cat (15).jpg 狗的概率 0.526 cat (15).jpg 狗的概率 0.750 cat (15).jpg 狗的概率 0.569
8 cat (2).jpg 猫的概率 0.649 cat (2).jpg 猫的概率 0.637 cat (2).jpg 猫的概率 0.844 cat (2).jpg 猫的概率 0.996 cat (2).jpg 猫的概率 0.998
9 cat (3).jpg 狗的概率 0.668 cat (3).jpg 猫的概率 0.538 cat (3).jpg 猫的概率 0.710 cat (3).jpg 猫的概率 0.968 cat (3).jpg 猫的概率 0.995
10 cat (4).jpg 狗的概率 0.856 cat (4).jpg 狗的概率 0.780 cat (4).jpg 狗的概率 0.831 cat (4).jpg 狗的概率 0.974 cat (4).jpg 狗的概率 0.976
11 cat (5).jpg 猫的概率 0.812 cat (5).jpg 猫的概率 0.776 cat (5).jpg 猫的概率 0.505 cat (5).jpg 猫的概率 0.732 cat (5).jpg 狗的概率 0.608
12 cat (6).jpg 猫的概率 0.524 cat (6).jpg 狗的概率 0.661 cat (6).jpg 狗的概率 0.748 cat (6).jpg 狗的概率 0.970 cat (6).jpg 狗的概率 0.987
13 cat (7).jpg 狗的概率 0.612 cat (7).jpg 猫的概率 0.845 cat (7).jpg 猫的概率 0.894 cat (7).jpg 猫的概率 0.987 cat (7).jpg 猫的概率 0.728
14 cat (8).jpg 狗的概率 0.823 cat (8).jpg 狗的概率 0.948 cat (8).jpg 狗的概率 0.920 cat (8).jpg 狗的概率 0.982 cat (8).jpg 狗的概率 0.999
15 cat (9).jpg 猫的概率 0.697 cat (9).jpg 猫的概率 0.704 cat (9).jpg 狗的概率 0.819 cat (9).jpg 猫的概率 0.930 cat (9).jpg 狗的概率 0.718
16 dog dog (1).jpg 狗的概率 0.987 dog (1).jpg 狗的概率 0.995 dog (1).jpg 狗的概率 0.999 dog (1).jpg 狗的概率 1.000 dog (1).jpg 狗的概率 1.000
17 dog (10).jpg 狗的概率 0.628 dog (10).jpg 猫的概率 0.629 dog (10).jpg 猫的概率 0.994 dog (10).jpg 猫的概率 1.000 dog (10).jpg 猫的概率 1.000
18 dog (11).jpg 狗的概率 0.804 dog (11).jpg 狗的概率 0.879 dog (11).jpg 狗的概率 0.993 dog (11).jpg 狗的概率 1.000 dog (11).jpg 狗的概率 1.000
19 dog (12).jpg 猫的概率 0.704 dog (12).jpg 猫的概率 0.758 dog (12).jpg 狗的概率 0.503 dog (12).jpg 狗的概率 0.653 dog (12).jpg 猫的概率 0.985
20 dog (13).jpg 狗的概率 0.987 dog (13).jpg 狗的概率 0.997 dog (13).jpg 狗的概率 1.000 dog (13).jpg 狗的概率 1.000 dog (13).jpg 狗的概率 1.000
21 dog (14).jpg 狗的概率 0.815 dog (14).jpg 狗的概率 0.844 dog (14).jpg 狗的概率 0.904 dog (14).jpg 狗的概率 0.996 dog (14).jpg 狗的概率 0.950
22 dog (15).jpg 狗的概率 0.917 dog (15).jpg 狗的概率 0.984 dog (15).jpg 狗的概率 0.999 dog (15).jpg 狗的概率 1.000 dog (15).jpg 狗的概率 1.000
23 dog (16).jpg 狗的概率 0.883 dog (16).jpg 狗的概率 0.931 dog (16).jpg 狗的概率 0.830 dog (16).jpg 狗的概率 0.975 dog (16).jpg 狗的概率 0.983
24 dog (2).jpg 狗的概率 0.934 dog (2).jpg 狗的概率 0.982 dog (2).jpg 狗的概率 0.998 dog (2).jpg 狗的概率 1.000 dog (2).jpg 狗的概率 1.000
25 dog (3).jpg 狗的概率 0.993 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000
26 dog (4).jpg 狗的概率 0.693 dog (4).jpg 狗的概率 0.754 dog (4).jpg 狗的概率 0.976 dog (4).jpg 狗的概率 0.515 dog (4).jpg 狗的概率 0.995
27 dog (5).jpg 狗的概率 0.916 dog (5).jpg 狗的概率 0.976 dog (5).jpg 狗的概率 0.993 dog (5).jpg 狗的概率 0.998 dog (5).jpg 狗的概率 1.000
28 dog (6).jpg 狗的概率 0.947 dog (6).jpg 狗的概率 0.989 dog (6).jpg 狗的概率 0.999 dog (6).jpg 狗的概率 1.000 dog (6).jpg 狗的概率 1.000
29 dog (7).jpg 猫的概率 0.526 dog (7).jpg 猫的概率 0.685 dog (7).jpg 猫的概率 0.961 dog (7).jpg 猫的概率 1.000 dog (7).jpg 猫的概率 1.000
30 dog (8).jpg 狗的概率 0.981 dog (8).jpg 狗的概率 0.998 dog (8).jpg 狗的概率 1.000 dog (8).jpg 狗的概率 1.000 dog (8).jpg 狗的概率 1.000
31 dog (9).jpg 狗的概率 0.899 dog (9).jpg 狗的概率 0.983 dog (9).jpg 狗的概率 0.999 dog (9).jpg 狗的概率 1.000 dog (9).jpg 狗的概率 1.000

训练结果

1. Step 0, train loss = 0.69, train accuracy = 78.12%
2. Step 50, train loss = 0.69, train accuracy = 43.75%
3. Step 100, train loss = 0.70, train accuracy = 46.88%
4. Step 150, train loss = 0.65, train accuracy = 75.00%
5. Step 200, train loss = 0.66, train accuracy = 59.38%
6. Step 250, train loss = 0.66, train accuracy = 62.50%
7. Step 300, train loss = 0.72, train accuracy = 40.62%
8. Step 350, train loss = 0.66, train accuracy = 62.50%
9. Step 400, train loss = 0.58, train accuracy = 68.75%
10. Step 450, train loss = 0.70, train accuracy = 65.62%
11. Step 500, train loss = 0.68, train accuracy = 56.25%
12. Step 550, train loss = 0.51, train accuracy = 81.25%
13. Step 600, train loss = 0.54, train accuracy = 75.00%
14. Step 650, train loss = 0.64, train accuracy = 68.75%
15. Step 700, train loss = 0.69, train accuracy = 53.12%
16. Step 750, train loss = 0.57, train accuracy = 71.88%
17. Step 800, train loss = 0.80, train accuracy = 50.00%
18. Step 850, train loss = 0.62, train accuracy = 59.38%
19. Step 900, train loss = 0.59, train accuracy = 65.62%
20. Step 950, train loss = 0.54, train accuracy = 71.88%
21. Step 1000, train loss = 0.57, train accuracy = 68.75%
22. Step 1050, train loss = 0.56, train accuracy = 78.12%
23. Step 1100, train loss = 0.66, train accuracy = 59.38%
24. Step 1150, train loss = 0.50, train accuracy = 84.38%
25. Step 1200, train loss = 0.46, train accuracy = 81.25%
26. Step 1250, train loss = 0.57, train accuracy = 59.38%
27. Step 1300, train loss = 0.37, train accuracy = 81.25%
28. Step 1350, train loss = 0.64, train accuracy = 62.50%
29. Step 1400, train loss = 0.44, train accuracy = 81.25%
30. Step 1450, train loss = 0.46, train accuracy = 84.38%
31. Step 1500, train loss = 0.50, train accuracy = 71.88%
32. Step 1550, train loss = 0.58, train accuracy = 62.50%
33. Step 1600, train loss = 0.43, train accuracy = 75.00%
34. Step 1650, train loss = 0.55, train accuracy = 71.88%
35. Step 1700, train loss = 0.50, train accuracy = 71.88%
36. Step 1750, train loss = 0.46, train accuracy = 75.00%
37. Step 1800, train loss = 0.81, train accuracy = 53.12%
38. Step 1850, train loss = 0.41, train accuracy = 90.62%
39. Step 1900, train loss = 0.65, train accuracy = 68.75%
40. Step 1950, train loss = 0.37, train accuracy = 84.38%
41. Step 2000, train loss = 0.39, train accuracy = 81.25%
42. Step 2050, train loss = 0.45, train accuracy = 84.38%
43. Step 2100, train loss = 0.44, train accuracy = 78.12%
44. Step 2150, train loss = 0.59, train accuracy = 65.62%
45. Step 2200, train loss = 0.51, train accuracy = 78.12%
46. Step 2250, train loss = 0.42, train accuracy = 81.25%
47. Step 2300, train loss = 0.32, train accuracy = 87.50%
48. Step 2350, train loss = 0.48, train accuracy = 75.00%
49. Step 2400, train loss = 0.54, train accuracy = 71.88%
50. Step 2450, train loss = 0.51, train accuracy = 71.88%
51. Step 2500, train loss = 0.73, train accuracy = 59.38%
52. Step 2550, train loss = 0.52, train accuracy = 78.12%
53. Step 2600, train loss = 0.65, train accuracy = 62.50%
54. Step 2650, train loss = 0.52, train accuracy = 71.88%
55. Step 2700, train loss = 0.48, train accuracy = 71.88%
56. Step 2750, train loss = 0.37, train accuracy = 84.38%
57. Step 2800, train loss = 0.46, train accuracy = 78.12%
58. Step 2850, train loss = 0.40, train accuracy = 84.38%
59. Step 2900, train loss = 0.45, train accuracy = 81.25%
60. Step 2950, train loss = 0.36, train accuracy = 84.38%
61. Step 3000, train loss = 0.46, train accuracy = 75.00%
62. Step 3050, train loss = 0.53, train accuracy = 71.88%
63. Step 3100, train loss = 0.37, train accuracy = 84.38%
64. Step 3150, train loss = 0.53, train accuracy = 75.00%
65. Step 3200, train loss = 0.52, train accuracy = 75.00%
66. Step 3250, train loss = 0.62, train accuracy = 65.62%
67. Step 3300, train loss = 0.58, train accuracy = 71.88%
68. Step 3350, train loss = 0.71, train accuracy = 65.62%
69. Step 3400, train loss = 0.43, train accuracy = 78.12%
70. Step 3450, train loss = 0.46, train accuracy = 78.12%
71. Step 3500, train loss = 0.46, train accuracy = 71.88%
72. Step 3550, train loss = 0.53, train accuracy = 68.75%
73. Step 3600, train loss = 0.44, train accuracy = 75.00%
74. Step 3650, train loss = 0.55, train accuracy = 65.62%
75. Step 3700, train loss = 0.62, train accuracy = 75.00%
76. Step 3750, train loss = 0.48, train accuracy = 75.00%
77. Step 3800, train loss = 0.66, train accuracy = 53.12%
78. Step 3850, train loss = 0.53, train accuracy = 75.00%
79. Step 3900, train loss = 0.36, train accuracy = 81.25%
80. Step 3950, train loss = 0.37, train accuracy = 87.50%
81. Step 4000, train loss = 0.46, train accuracy = 78.12%
82. Step 4050, train loss = 0.36, train accuracy = 84.38%
83. Step 4100, train loss = 0.34, train accuracy = 78.12%
84. Step 4150, train loss = 0.48, train accuracy = 78.12%
85. Step 4200, train loss = 0.43, train accuracy = 87.50%
86. Step 4250, train loss = 0.34, train accuracy = 84.38%
87. Step 4300, train loss = 0.28, train accuracy = 87.50%
88. Step 4350, train loss = 0.19, train accuracy = 96.88%
89. Step 4400, train loss = 0.46, train accuracy = 71.88%
90. Step 4450, train loss = 0.33, train accuracy = 84.38%
91. Step 4500, train loss = 0.55, train accuracy = 75.00%
92. Step 4550, train loss = 0.31, train accuracy = 93.75%
93. Step 4600, train loss = 0.30, train accuracy = 84.38%
94. Step 4650, train loss = 0.38, train accuracy = 84.38%
95. Step 4700, train loss = 0.36, train accuracy = 84.38%
96. Step 4750, train loss = 0.32, train accuracy = 87.50%
97. Step 4800, train loss = 0.36, train accuracy = 81.25%
98. Step 4850, train loss = 0.36, train accuracy = 87.50%
99. Step 4900, train loss = 0.49, train accuracy = 71.88%
100. Step 4950, train loss = 0.51, train accuracy = 68.75%
101. Step 5000, train loss = 0.59, train accuracy = 68.75%
102. Step 5050, train loss = 0.55, train accuracy = 75.00%
103. Step 5100, train loss = 0.71, train accuracy = 68.75%
104. Step 5150, train loss = 0.48, train accuracy = 71.88%
105. Step 5200, train loss = 0.39, train accuracy = 90.62%
106. Step 5250, train loss = 0.49, train accuracy = 81.25%
107. Step 5300, train loss = 0.36, train accuracy = 81.25%
108. Step 5350, train loss = 0.31, train accuracy = 90.62%
109. Step 5400, train loss = 0.39, train accuracy = 87.50%
110. Step 5450, train loss = 0.34, train accuracy = 78.12%
111. Step 5500, train loss = 0.29, train accuracy = 84.38%
112. Step 5550, train loss = 0.21, train accuracy = 93.75%
113. Step 5600, train loss = 0.41, train accuracy = 78.12%
114. Step 5650, train loss = 0.38, train accuracy = 84.38%
115. Step 5700, train loss = 0.27, train accuracy = 87.50%
116. Step 5750, train loss = 0.24, train accuracy = 90.62%
117. Step 5800, train loss = 0.17, train accuracy = 96.88%
118. Step 5850, train loss = 0.23, train accuracy = 93.75%
119. Step 5900, train loss = 0.37, train accuracy = 71.88%
120. Step 5950, train loss = 0.49, train accuracy = 71.88%
121. Step 6000, train loss = 0.43, train accuracy = 81.25%
122. Step 6050, train loss = 0.33, train accuracy = 87.50%
123. Step 6100, train loss = 0.46, train accuracy = 75.00%
124. Step 6150, train loss = 0.61, train accuracy = 81.25%
125. Step 6200, train loss = 0.34, train accuracy = 84.38%
126. Step 6250, train loss = 0.63, train accuracy = 71.88%
127. Step 6300, train loss = 0.21, train accuracy = 90.62%
128. Step 6350, train loss = 0.21, train accuracy = 90.62%
129. Step 6400, train loss = 0.27, train accuracy = 87.50%
130. Step 6450, train loss = 0.17, train accuracy = 87.50%
131. Step 6500, train loss = 0.34, train accuracy = 87.50%
132. Step 6550, train loss = 0.34, train accuracy = 87.50%
133. Step 6600, train loss = 0.32, train accuracy = 84.38%
134. Step 6650, train loss = 0.39, train accuracy = 84.38%
135. Step 6700, train loss = 0.38, train accuracy = 84.38%
136. Step 6750, train loss = 0.41, train accuracy = 84.38%
137. Step 6800, train loss = 0.49, train accuracy = 81.25%
138. Step 6850, train loss = 0.36, train accuracy = 84.38%
139. Step 6900, train loss = 0.20, train accuracy = 93.75%
140. Step 6950, train loss = 0.13, train accuracy = 93.75%
141. Step 7000, train loss = 0.31, train accuracy = 87.50%
142. Step 7050, train loss = 0.18, train accuracy = 93.75%
143. Step 7100, train loss = 0.23, train accuracy = 90.62%
144. Step 7150, train loss = 0.13, train accuracy = 96.88%
145. Step 7200, train loss = 0.14, train accuracy = 96.88%
146. Step 7250, train loss = 0.32, train accuracy = 84.38%
147. Step 7300, train loss = 0.18, train accuracy = 93.75%
148. Step 7350, train loss = 0.14, train accuracy = 100.00%
149. Step 7400, train loss = 0.60, train accuracy = 75.00%
150. Step 7450, train loss = 0.20, train accuracy = 93.75%
151. Step 7500, train loss = 0.13, train accuracy = 93.75%
152. Step 7550, train loss = 0.22, train accuracy = 90.62%
153. Step 7600, train loss = 0.13, train accuracy = 96.88%
154. Step 7650, train loss = 0.20, train accuracy = 93.75%
155. Step 7700, train loss = 0.24, train accuracy = 90.62%
156. Step 7750, train loss = 0.19, train accuracy = 93.75%
157. Step 7800, train loss = 0.16, train accuracy = 93.75%
158. Step 7850, train loss = 0.08, train accuracy = 100.00%
159. Step 7900, train loss = 0.10, train accuracy = 96.88%
160. Step 7950, train loss = 0.13, train accuracy = 93.75%
161. Step 8000, train loss = 0.18, train accuracy = 90.62%
162. Step 8050, train loss = 0.27, train accuracy = 93.75%
163. Step 8100, train loss = 0.04, train accuracy = 100.00%
164. Step 8150, train loss = 0.27, train accuracy = 87.50%
165. Step 8200, train loss = 0.06, train accuracy = 96.88%
166. Step 8250, train loss = 0.12, train accuracy = 100.00%
167. Step 8300, train loss = 0.28, train accuracy = 87.50%
168. Step 8350, train loss = 0.24, train accuracy = 90.62%
169. Step 8400, train loss = 0.16, train accuracy = 93.75%
170. Step 8450, train loss = 0.11, train accuracy = 93.75%
171. Step 8500, train loss = 0.13, train accuracy = 96.88%
172. Step 8550, train loss = 0.05, train accuracy = 100.00%
173. Step 8600, train loss = 0.10, train accuracy = 93.75%
174. Step 8650, train loss = 0.14, train accuracy = 100.00%
175. Step 8700, train loss = 0.21, train accuracy = 90.62%
176. Step 8750, train loss = 0.09, train accuracy = 96.88%
177. Step 8800, train loss = 0.11, train accuracy = 96.88%
178. Step 8850, train loss = 0.10, train accuracy = 96.88%
179. Step 8900, train loss = 0.12, train accuracy = 93.75%
180. Step 8950, train loss = 0.48, train accuracy = 81.25%
181. Step 9000, train loss = 0.07, train accuracy = 100.00%
182. Step 9050, train loss = 0.03, train accuracy = 100.00%
183. Step 9100, train loss = 0.10, train accuracy = 93.75%
184. Step 9150, train loss = 0.05, train accuracy = 96.88%
185. Step 9200, train loss = 0.04, train accuracy = 100.00%
186. Step 9250, train loss = 0.03, train accuracy = 100.00%
187. Step 9300, train loss = 0.04, train accuracy = 96.88%
188. Step 9350, train loss = 0.08, train accuracy = 100.00%
189. Step 9400, train loss = 0.05, train accuracy = 100.00%
190. Step 9450, train loss = 0.15, train accuracy = 90.62%
191. Step 9500, train loss = 0.03, train accuracy = 100.00%
192. Step 9550, train loss = 0.05, train accuracy = 100.00%
193. Step 9600, train loss = 0.15, train accuracy = 96.88%
194. Step 9650, train loss = 0.03, train accuracy = 100.00%
195. Step 9700, train loss = 0.02, train accuracy = 100.00%
196. Step 9750, train loss = 0.08, train accuracy = 96.88%
197. Step 9800, train loss = 0.04, train accuracy = 100.00%
198. Step 9850, train loss = 0.06, train accuracy = 96.88%
199. Step 9900, train loss = 0.03, train accuracy = 100.00%
200. Step 9950, train loss = 0.03, train accuracy = 100.00%
201. Step 10000, train loss = 0.11, train accuracy = 93.75%
202. Step 10050, train loss = 0.02, train accuracy = 100.00%
203. Step 10100, train loss = 0.01, train accuracy = 100.00%
204. Step 10150, train loss = 0.05, train accuracy = 96.88%
205. Step 10200, train loss = 0.07, train accuracy = 96.88%
206. Step 10250, train loss = 0.06, train accuracy = 96.88%
207. Step 10300, train loss = 0.03, train accuracy = 100.00%
208. Step 10350, train loss = 0.08, train accuracy = 96.88%
209. Step 10400, train loss = 0.05, train accuracy = 96.88%
210. Step 10450, train loss = 0.02, train accuracy = 100.00%
211. Step 10500, train loss = 0.22, train accuracy = 93.75%
212. Step 10550, train loss = 0.06, train accuracy = 100.00%
213. Step 10600, train loss = 0.02, train accuracy = 100.00%
214. Step 10650, train loss = 0.02, train accuracy = 100.00%
215. Step 10700, train loss = 0.03, train accuracy = 100.00%
216. Step 10750, train loss = 0.15, train accuracy = 96.88%
217. Step 10800, train loss = 0.05, train accuracy = 100.00%
218. Step 10850, train loss = 0.02, train accuracy = 100.00%
219. Step 10900, train loss = 0.04, train accuracy = 96.88%
220. Step 10950, train loss = 0.05, train accuracy = 96.88%
221. Step 11000, train loss = 0.02, train accuracy = 100.00%
222. Step 11050, train loss = 0.10, train accuracy = 96.88%
223. Step 11100, train loss = 0.08, train accuracy = 96.88%
224. Step 11150, train loss = 0.02, train accuracy = 100.00%
225. Step 11200, train loss = 0.01, train accuracy = 100.00%
226. Step 11250, train loss = 0.06, train accuracy = 96.88%
227. Step 11300, train loss = 0.18, train accuracy = 93.75%
228. Step 11350, train loss = 0.02, train accuracy = 100.00%
229. Step 11400, train loss = 0.04, train accuracy = 100.00%
230. Step 11450, train loss = 0.03, train accuracy = 100.00%
231. Step 11500, train loss = 0.01, train accuracy = 100.00%
232. Step 11550, train loss = 0.02, train accuracy = 100.00%

核心代码

1.         weights = tf.get_variable('weights',  
2.                                   shape=[3, 3, 3, 16],  
3.                                   dtype=tf.float32,  
4.                                   initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  
5.         biases = tf.get_variable('biases',  
6.                                  shape=[16],  
7.                                  dtype=tf.float32,  
8.                                  initializer=tf.constant_initializer(0.1))  
9.         conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')  
10.         pre_activation = tf.nn.bias_add(conv, biases)  
11.         conv1 = tf.nn.relu(pre_activation, name=scope.name)  
12. with tf.variable_scope('pooling1_lrn') as scope:  
13.             pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')  
14.             norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')  
15. 
16. with tf.variable_scope('conv2') as scope:  
17.                 weights = tf.get_variable('weights',  
18.                                           shape=[3, 3, 16, 16],  
19.                                           dtype=tf.float32,  
20.                                           initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  
21.                 biases = tf.get_variable('biases',  
22.                                          shape=[16],  
23.                                          dtype=tf.float32,  
24.                                          initializer=tf.constant_initializer(0.1))  
25.                 conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')  
26.                 pre_activation = tf.nn.bias_add(conv, biases)  
27.                 conv2 = tf.nn.relu(pre_activation, name='conv2')  
28. 
29. 
30. with tf.variable_scope('pooling2_lrn') as scope:  
31.         norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')  
32.         pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')  
33. 
34. with tf.variable_scope('local3') as scope:  
35.         reshape = tf.reshape(pool2, shape=[batch_size, -1])  
36.         dim = reshape.get_shape()[1].value  
37.         weights = tf.get_variable('weights',  
38.                                   shape=[dim, 128],  
39.                                   dtype=tf.float32,  
40.                                   initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
41.         biases = tf.get_variable('biases',  
42.                                  shape=[128],  
43.                                  dtype=tf.float32,  
44.                                  initializer=tf.constant_initializer(0.1))  
45.     local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)  
46. 
47. # local4  
48. with tf.variable_scope('local4') as scope:  
49.         weights = tf.get_variable('weights',  
50.                                   shape=[128, 128],  
51.                                   dtype=tf.float32,  
52.                                   initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
53.         biases = tf.get_variable('biases',  
54.                                  shape=[128],  
55.                                  dtype=tf.float32,  
56.                                  initializer=tf.constant_initializer(0.1))  
57.         local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')  
58. 
59. 
60. with tf.variable_scope('softmax_linear') as scope:  
61.         weights = tf.get_variable('softmax_linear',  
62.                                   shape=[128, n_classes],  
63.                                   dtype=tf.float32,  
64.                                   initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
65.         biases = tf.get_variable('biases',  
66.                                  shape=[n_classes],  
67.                                  dtype=tf.float32,  
68.                                  initializer=tf.constant_initializer(0.1))  
69.         softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')


相关文章
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
15天前
|
机器学习/深度学习 人工智能 算法
深入理解卷积神经网络:从理论到实践
【9月更文挑战第31天】在深度学习的众多模型之中,卷积神经网络(CNN)以其在图像处理领域的出色表现而闻名。本文将通过浅显易懂的语言和直观的比喻,带领读者了解CNN的核心原理和结构,并通过一个简化的代码示例,展示如何实现一个简单的CNN模型。我们将从CNN的基本组成出发,逐步深入到其在现实世界中的应用,最后探讨其未来的可能性。文章旨在为初学者提供一个清晰的CNN入门指南,同时为有经验的开发者提供一些深入思考的视角。
|
15天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第31天】本文旨在通过浅显易懂的语言和直观的比喻,为初学者揭开深度学习中卷积神经网络(CNN)的神秘面纱。我们将从CNN的基本原理出发,逐步深入到其在图像识别领域的实际应用,并通过一个简单的代码示例,展示如何利用CNN进行图像分类。无论你是编程新手还是深度学习的初学者,这篇文章都将为你打开一扇通往人工智能世界的大门。
|
1天前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
25 0
|
3天前
|
机器学习/深度学习 计算机视觉
深入浅出卷积神经网络(CNN)
【10月更文挑战第5天】本文将通过浅显易懂的语言和实际代码示例,带你了解卷积神经网络(CNN)的基础知识、工作原理以及如何应用。我们将一起探索这个强大的深度学习工具,看看它是如何在图像识别、语音处理等领域大放异彩的。无论你是初学者还是有一定基础的学习者,这篇文章都会为你提供有价值的信息和知识。让我们一起踏上这段深入浅出的CNN之旅吧!
|
3天前
|
机器学习/深度学习 编解码 自然语言处理
卷积神经网络(CNN)的发展历程
【10月更文挑战第1天】卷积神经网络(CNN)的发展历程
|
7天前
|
机器学习/深度学习 PyTorch API
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
|
29天前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
46 0
|
1月前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
51 0
|
2月前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
47 0

热门文章

最新文章