CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

简介: CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别


目录

基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

数据集介绍

输出结果

使用model.ckpt-6000模型预测

预测错误的只有一个案例,如下所示

训练结果

核心代码


基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

数据集介绍

数据下载Dogs vs. Cats Redux: Kernels Edition | Kaggle

    train文件夹里有25000张狗和猫的图片。这个文件夹中的每个图像都有标签作为文件名的一部分。测试文件夹包含12500张图片,根据数字id命名。对于测试集中的每个图像,您应该预测图像是一只狗的概率(1 =狗,0 =猫)。

输出结果

使用model.ckpt-6000模型预测

预测错误的只有一个案例,如下所示

序号 使用model.ckpt-4000模型预测 使用model.ckpt-6000模型预测 使用model.ckpt-8000模型预测 使用model.ckpt-10000模型预测 使用model.ckpt-12000模型预测
1 cat cat (1).jpg 猫的概率 0.631 cat (1).jpg 狗的概率 0.740 cat (1).jpg 狗的概率 0.781 cat (1).jpg 狗的概率 0.976 cat (1).jpg 狗的概率 0.991
2 cat (10).jpg 狗的概率 0.697 cat (10).jpg 猫的概率 0.566 cat (10).jpg 猫的概率 0.925 cat (10).jpg 猫的概率 0.925 cat (10).jpg 猫的概率 0.816
3 cat (11).jpg 猫的概率 0.927 cat (11).jpg 猫的概率 0.988 cat (11).jpg 猫的概率 1.000 cat (11).jpg 猫的概率 1.000 cat (11).jpg 猫的概率 1.000
4 cat (12).jpg 狗的概率 0.746 cat (12).jpg 狗的概率 0.723 cat (12).jpg 狗的概率 0.822 cat (12).jpg 狗的概率 0.998 cat (12).jpg 狗的概率 1.000
5 cat (13).jpg 猫的概率 0.933 cat (13).jpg 猫的概率 0.983 cat (13).jpg 猫的概率 0.997 cat (13).jpg 猫的概率 1.000 cat (13).jpg 猫的概率 1.000
6 cat (14).jpg 狗的概率 0.657 cat (14).jpg 猫的概率 0.597 cat (14).jpg 狗的概率 0.758 cat (14).jpg 狗的概率 0.695 cat (14).jpg 猫的概率 0.544
7 cat (15).jpg 狗的概率 0.578 cat (15).jpg 狗的概率 0.535 cat (15).jpg 狗的概率 0.526 cat (15).jpg 狗的概率 0.750 cat (15).jpg 狗的概率 0.569
8 cat (2).jpg 猫的概率 0.649 cat (2).jpg 猫的概率 0.637 cat (2).jpg 猫的概率 0.844 cat (2).jpg 猫的概率 0.996 cat (2).jpg 猫的概率 0.998
9 cat (3).jpg 狗的概率 0.668 cat (3).jpg 猫的概率 0.538 cat (3).jpg 猫的概率 0.710 cat (3).jpg 猫的概率 0.968 cat (3).jpg 猫的概率 0.995
10 cat (4).jpg 狗的概率 0.856 cat (4).jpg 狗的概率 0.780 cat (4).jpg 狗的概率 0.831 cat (4).jpg 狗的概率 0.974 cat (4).jpg 狗的概率 0.976
11 cat (5).jpg 猫的概率 0.812 cat (5).jpg 猫的概率 0.776 cat (5).jpg 猫的概率 0.505 cat (5).jpg 猫的概率 0.732 cat (5).jpg 狗的概率 0.608
12 cat (6).jpg 猫的概率 0.524 cat (6).jpg 狗的概率 0.661 cat (6).jpg 狗的概率 0.748 cat (6).jpg 狗的概率 0.970 cat (6).jpg 狗的概率 0.987
13 cat (7).jpg 狗的概率 0.612 cat (7).jpg 猫的概率 0.845 cat (7).jpg 猫的概率 0.894 cat (7).jpg 猫的概率 0.987 cat (7).jpg 猫的概率 0.728
14 cat (8).jpg 狗的概率 0.823 cat (8).jpg 狗的概率 0.948 cat (8).jpg 狗的概率 0.920 cat (8).jpg 狗的概率 0.982 cat (8).jpg 狗的概率 0.999
15 cat (9).jpg 猫的概率 0.697 cat (9).jpg 猫的概率 0.704 cat (9).jpg 狗的概率 0.819 cat (9).jpg 猫的概率 0.930 cat (9).jpg 狗的概率 0.718
16 dog dog (1).jpg 狗的概率 0.987 dog (1).jpg 狗的概率 0.995 dog (1).jpg 狗的概率 0.999 dog (1).jpg 狗的概率 1.000 dog (1).jpg 狗的概率 1.000
17 dog (10).jpg 狗的概率 0.628 dog (10).jpg 猫的概率 0.629 dog (10).jpg 猫的概率 0.994 dog (10).jpg 猫的概率 1.000 dog (10).jpg 猫的概率 1.000
18 dog (11).jpg 狗的概率 0.804 dog (11).jpg 狗的概率 0.879 dog (11).jpg 狗的概率 0.993 dog (11).jpg 狗的概率 1.000 dog (11).jpg 狗的概率 1.000
19 dog (12).jpg 猫的概率 0.704 dog (12).jpg 猫的概率 0.758 dog (12).jpg 狗的概率 0.503 dog (12).jpg 狗的概率 0.653 dog (12).jpg 猫的概率 0.985
20 dog (13).jpg 狗的概率 0.987 dog (13).jpg 狗的概率 0.997 dog (13).jpg 狗的概率 1.000 dog (13).jpg 狗的概率 1.000 dog (13).jpg 狗的概率 1.000
21 dog (14).jpg 狗的概率 0.815 dog (14).jpg 狗的概率 0.844 dog (14).jpg 狗的概率 0.904 dog (14).jpg 狗的概率 0.996 dog (14).jpg 狗的概率 0.950
22 dog (15).jpg 狗的概率 0.917 dog (15).jpg 狗的概率 0.984 dog (15).jpg 狗的概率 0.999 dog (15).jpg 狗的概率 1.000 dog (15).jpg 狗的概率 1.000
23 dog (16).jpg 狗的概率 0.883 dog (16).jpg 狗的概率 0.931 dog (16).jpg 狗的概率 0.830 dog (16).jpg 狗的概率 0.975 dog (16).jpg 狗的概率 0.983
24 dog (2).jpg 狗的概率 0.934 dog (2).jpg 狗的概率 0.982 dog (2).jpg 狗的概率 0.998 dog (2).jpg 狗的概率 1.000 dog (2).jpg 狗的概率 1.000
25 dog (3).jpg 狗的概率 0.993 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000
26 dog (4).jpg 狗的概率 0.693 dog (4).jpg 狗的概率 0.754 dog (4).jpg 狗的概率 0.976 dog (4).jpg 狗的概率 0.515 dog (4).jpg 狗的概率 0.995
27 dog (5).jpg 狗的概率 0.916 dog (5).jpg 狗的概率 0.976 dog (5).jpg 狗的概率 0.993 dog (5).jpg 狗的概率 0.998 dog (5).jpg 狗的概率 1.000
28 dog (6).jpg 狗的概率 0.947 dog (6).jpg 狗的概率 0.989 dog (6).jpg 狗的概率 0.999 dog (6).jpg 狗的概率 1.000 dog (6).jpg 狗的概率 1.000
29 dog (7).jpg 猫的概率 0.526 dog (7).jpg 猫的概率 0.685 dog (7).jpg 猫的概率 0.961 dog (7).jpg 猫的概率 1.000 dog (7).jpg 猫的概率 1.000
30 dog (8).jpg 狗的概率 0.981 dog (8).jpg 狗的概率 0.998 dog (8).jpg 狗的概率 1.000 dog (8).jpg 狗的概率 1.000 dog (8).jpg 狗的概率 1.000
31 dog (9).jpg 狗的概率 0.899 dog (9).jpg 狗的概率 0.983 dog (9).jpg 狗的概率 0.999 dog (9).jpg 狗的概率 1.000 dog (9).jpg 狗的概率 1.000

训练结果

1. Step 0, train loss = 0.69, train accuracy = 78.12%
2. Step 50, train loss = 0.69, train accuracy = 43.75%
3. Step 100, train loss = 0.70, train accuracy = 46.88%
4. Step 150, train loss = 0.65, train accuracy = 75.00%
5. Step 200, train loss = 0.66, train accuracy = 59.38%
6. Step 250, train loss = 0.66, train accuracy = 62.50%
7. Step 300, train loss = 0.72, train accuracy = 40.62%
8. Step 350, train loss = 0.66, train accuracy = 62.50%
9. Step 400, train loss = 0.58, train accuracy = 68.75%
10. Step 450, train loss = 0.70, train accuracy = 65.62%
11. Step 500, train loss = 0.68, train accuracy = 56.25%
12. Step 550, train loss = 0.51, train accuracy = 81.25%
13. Step 600, train loss = 0.54, train accuracy = 75.00%
14. Step 650, train loss = 0.64, train accuracy = 68.75%
15. Step 700, train loss = 0.69, train accuracy = 53.12%
16. Step 750, train loss = 0.57, train accuracy = 71.88%
17. Step 800, train loss = 0.80, train accuracy = 50.00%
18. Step 850, train loss = 0.62, train accuracy = 59.38%
19. Step 900, train loss = 0.59, train accuracy = 65.62%
20. Step 950, train loss = 0.54, train accuracy = 71.88%
21. Step 1000, train loss = 0.57, train accuracy = 68.75%
22. Step 1050, train loss = 0.56, train accuracy = 78.12%
23. Step 1100, train loss = 0.66, train accuracy = 59.38%
24. Step 1150, train loss = 0.50, train accuracy = 84.38%
25. Step 1200, train loss = 0.46, train accuracy = 81.25%
26. Step 1250, train loss = 0.57, train accuracy = 59.38%
27. Step 1300, train loss = 0.37, train accuracy = 81.25%
28. Step 1350, train loss = 0.64, train accuracy = 62.50%
29. Step 1400, train loss = 0.44, train accuracy = 81.25%
30. Step 1450, train loss = 0.46, train accuracy = 84.38%
31. Step 1500, train loss = 0.50, train accuracy = 71.88%
32. Step 1550, train loss = 0.58, train accuracy = 62.50%
33. Step 1600, train loss = 0.43, train accuracy = 75.00%
34. Step 1650, train loss = 0.55, train accuracy = 71.88%
35. Step 1700, train loss = 0.50, train accuracy = 71.88%
36. Step 1750, train loss = 0.46, train accuracy = 75.00%
37. Step 1800, train loss = 0.81, train accuracy = 53.12%
38. Step 1850, train loss = 0.41, train accuracy = 90.62%
39. Step 1900, train loss = 0.65, train accuracy = 68.75%
40. Step 1950, train loss = 0.37, train accuracy = 84.38%
41. Step 2000, train loss = 0.39, train accuracy = 81.25%
42. Step 2050, train loss = 0.45, train accuracy = 84.38%
43. Step 2100, train loss = 0.44, train accuracy = 78.12%
44. Step 2150, train loss = 0.59, train accuracy = 65.62%
45. Step 2200, train loss = 0.51, train accuracy = 78.12%
46. Step 2250, train loss = 0.42, train accuracy = 81.25%
47. Step 2300, train loss = 0.32, train accuracy = 87.50%
48. Step 2350, train loss = 0.48, train accuracy = 75.00%
49. Step 2400, train loss = 0.54, train accuracy = 71.88%
50. Step 2450, train loss = 0.51, train accuracy = 71.88%
51. Step 2500, train loss = 0.73, train accuracy = 59.38%
52. Step 2550, train loss = 0.52, train accuracy = 78.12%
53. Step 2600, train loss = 0.65, train accuracy = 62.50%
54. Step 2650, train loss = 0.52, train accuracy = 71.88%
55. Step 2700, train loss = 0.48, train accuracy = 71.88%
56. Step 2750, train loss = 0.37, train accuracy = 84.38%
57. Step 2800, train loss = 0.46, train accuracy = 78.12%
58. Step 2850, train loss = 0.40, train accuracy = 84.38%
59. Step 2900, train loss = 0.45, train accuracy = 81.25%
60. Step 2950, train loss = 0.36, train accuracy = 84.38%
61. Step 3000, train loss = 0.46, train accuracy = 75.00%
62. Step 3050, train loss = 0.53, train accuracy = 71.88%
63. Step 3100, train loss = 0.37, train accuracy = 84.38%
64. Step 3150, train loss = 0.53, train accuracy = 75.00%
65. Step 3200, train loss = 0.52, train accuracy = 75.00%
66. Step 3250, train loss = 0.62, train accuracy = 65.62%
67. Step 3300, train loss = 0.58, train accuracy = 71.88%
68. Step 3350, train loss = 0.71, train accuracy = 65.62%
69. Step 3400, train loss = 0.43, train accuracy = 78.12%
70. Step 3450, train loss = 0.46, train accuracy = 78.12%
71. Step 3500, train loss = 0.46, train accuracy = 71.88%
72. Step 3550, train loss = 0.53, train accuracy = 68.75%
73. Step 3600, train loss = 0.44, train accuracy = 75.00%
74. Step 3650, train loss = 0.55, train accuracy = 65.62%
75. Step 3700, train loss = 0.62, train accuracy = 75.00%
76. Step 3750, train loss = 0.48, train accuracy = 75.00%
77. Step 3800, train loss = 0.66, train accuracy = 53.12%
78. Step 3850, train loss = 0.53, train accuracy = 75.00%
79. Step 3900, train loss = 0.36, train accuracy = 81.25%
80. Step 3950, train loss = 0.37, train accuracy = 87.50%
81. Step 4000, train loss = 0.46, train accuracy = 78.12%
82. Step 4050, train loss = 0.36, train accuracy = 84.38%
83. Step 4100, train loss = 0.34, train accuracy = 78.12%
84. Step 4150, train loss = 0.48, train accuracy = 78.12%
85. Step 4200, train loss = 0.43, train accuracy = 87.50%
86. Step 4250, train loss = 0.34, train accuracy = 84.38%
87. Step 4300, train loss = 0.28, train accuracy = 87.50%
88. Step 4350, train loss = 0.19, train accuracy = 96.88%
89. Step 4400, train loss = 0.46, train accuracy = 71.88%
90. Step 4450, train loss = 0.33, train accuracy = 84.38%
91. Step 4500, train loss = 0.55, train accuracy = 75.00%
92. Step 4550, train loss = 0.31, train accuracy = 93.75%
93. Step 4600, train loss = 0.30, train accuracy = 84.38%
94. Step 4650, train loss = 0.38, train accuracy = 84.38%
95. Step 4700, train loss = 0.36, train accuracy = 84.38%
96. Step 4750, train loss = 0.32, train accuracy = 87.50%
97. Step 4800, train loss = 0.36, train accuracy = 81.25%
98. Step 4850, train loss = 0.36, train accuracy = 87.50%
99. Step 4900, train loss = 0.49, train accuracy = 71.88%
100. Step 4950, train loss = 0.51, train accuracy = 68.75%
101. Step 5000, train loss = 0.59, train accuracy = 68.75%
102. Step 5050, train loss = 0.55, train accuracy = 75.00%
103. Step 5100, train loss = 0.71, train accuracy = 68.75%
104. Step 5150, train loss = 0.48, train accuracy = 71.88%
105. Step 5200, train loss = 0.39, train accuracy = 90.62%
106. Step 5250, train loss = 0.49, train accuracy = 81.25%
107. Step 5300, train loss = 0.36, train accuracy = 81.25%
108. Step 5350, train loss = 0.31, train accuracy = 90.62%
109. Step 5400, train loss = 0.39, train accuracy = 87.50%
110. Step 5450, train loss = 0.34, train accuracy = 78.12%
111. Step 5500, train loss = 0.29, train accuracy = 84.38%
112. Step 5550, train loss = 0.21, train accuracy = 93.75%
113. Step 5600, train loss = 0.41, train accuracy = 78.12%
114. Step 5650, train loss = 0.38, train accuracy = 84.38%
115. Step 5700, train loss = 0.27, train accuracy = 87.50%
116. Step 5750, train loss = 0.24, train accuracy = 90.62%
117. Step 5800, train loss = 0.17, train accuracy = 96.88%
118. Step 5850, train loss = 0.23, train accuracy = 93.75%
119. Step 5900, train loss = 0.37, train accuracy = 71.88%
120. Step 5950, train loss = 0.49, train accuracy = 71.88%
121. Step 6000, train loss = 0.43, train accuracy = 81.25%
122. Step 6050, train loss = 0.33, train accuracy = 87.50%
123. Step 6100, train loss = 0.46, train accuracy = 75.00%
124. Step 6150, train loss = 0.61, train accuracy = 81.25%
125. Step 6200, train loss = 0.34, train accuracy = 84.38%
126. Step 6250, train loss = 0.63, train accuracy = 71.88%
127. Step 6300, train loss = 0.21, train accuracy = 90.62%
128. Step 6350, train loss = 0.21, train accuracy = 90.62%
129. Step 6400, train loss = 0.27, train accuracy = 87.50%
130. Step 6450, train loss = 0.17, train accuracy = 87.50%
131. Step 6500, train loss = 0.34, train accuracy = 87.50%
132. Step 6550, train loss = 0.34, train accuracy = 87.50%
133. Step 6600, train loss = 0.32, train accuracy = 84.38%
134. Step 6650, train loss = 0.39, train accuracy = 84.38%
135. Step 6700, train loss = 0.38, train accuracy = 84.38%
136. Step 6750, train loss = 0.41, train accuracy = 84.38%
137. Step 6800, train loss = 0.49, train accuracy = 81.25%
138. Step 6850, train loss = 0.36, train accuracy = 84.38%
139. Step 6900, train loss = 0.20, train accuracy = 93.75%
140. Step 6950, train loss = 0.13, train accuracy = 93.75%
141. Step 7000, train loss = 0.31, train accuracy = 87.50%
142. Step 7050, train loss = 0.18, train accuracy = 93.75%
143. Step 7100, train loss = 0.23, train accuracy = 90.62%
144. Step 7150, train loss = 0.13, train accuracy = 96.88%
145. Step 7200, train loss = 0.14, train accuracy = 96.88%
146. Step 7250, train loss = 0.32, train accuracy = 84.38%
147. Step 7300, train loss = 0.18, train accuracy = 93.75%
148. Step 7350, train loss = 0.14, train accuracy = 100.00%
149. Step 7400, train loss = 0.60, train accuracy = 75.00%
150. Step 7450, train loss = 0.20, train accuracy = 93.75%
151. Step 7500, train loss = 0.13, train accuracy = 93.75%
152. Step 7550, train loss = 0.22, train accuracy = 90.62%
153. Step 7600, train loss = 0.13, train accuracy = 96.88%
154. Step 7650, train loss = 0.20, train accuracy = 93.75%
155. Step 7700, train loss = 0.24, train accuracy = 90.62%
156. Step 7750, train loss = 0.19, train accuracy = 93.75%
157. Step 7800, train loss = 0.16, train accuracy = 93.75%
158. Step 7850, train loss = 0.08, train accuracy = 100.00%
159. Step 7900, train loss = 0.10, train accuracy = 96.88%
160. Step 7950, train loss = 0.13, train accuracy = 93.75%
161. Step 8000, train loss = 0.18, train accuracy = 90.62%
162. Step 8050, train loss = 0.27, train accuracy = 93.75%
163. Step 8100, train loss = 0.04, train accuracy = 100.00%
164. Step 8150, train loss = 0.27, train accuracy = 87.50%
165. Step 8200, train loss = 0.06, train accuracy = 96.88%
166. Step 8250, train loss = 0.12, train accuracy = 100.00%
167. Step 8300, train loss = 0.28, train accuracy = 87.50%
168. Step 8350, train loss = 0.24, train accuracy = 90.62%
169. Step 8400, train loss = 0.16, train accuracy = 93.75%
170. Step 8450, train loss = 0.11, train accuracy = 93.75%
171. Step 8500, train loss = 0.13, train accuracy = 96.88%
172. Step 8550, train loss = 0.05, train accuracy = 100.00%
173. Step 8600, train loss = 0.10, train accuracy = 93.75%
174. Step 8650, train loss = 0.14, train accuracy = 100.00%
175. Step 8700, train loss = 0.21, train accuracy = 90.62%
176. Step 8750, train loss = 0.09, train accuracy = 96.88%
177. Step 8800, train loss = 0.11, train accuracy = 96.88%
178. Step 8850, train loss = 0.10, train accuracy = 96.88%
179. Step 8900, train loss = 0.12, train accuracy = 93.75%
180. Step 8950, train loss = 0.48, train accuracy = 81.25%
181. Step 9000, train loss = 0.07, train accuracy = 100.00%
182. Step 9050, train loss = 0.03, train accuracy = 100.00%
183. Step 9100, train loss = 0.10, train accuracy = 93.75%
184. Step 9150, train loss = 0.05, train accuracy = 96.88%
185. Step 9200, train loss = 0.04, train accuracy = 100.00%
186. Step 9250, train loss = 0.03, train accuracy = 100.00%
187. Step 9300, train loss = 0.04, train accuracy = 96.88%
188. Step 9350, train loss = 0.08, train accuracy = 100.00%
189. Step 9400, train loss = 0.05, train accuracy = 100.00%
190. Step 9450, train loss = 0.15, train accuracy = 90.62%
191. Step 9500, train loss = 0.03, train accuracy = 100.00%
192. Step 9550, train loss = 0.05, train accuracy = 100.00%
193. Step 9600, train loss = 0.15, train accuracy = 96.88%
194. Step 9650, train loss = 0.03, train accuracy = 100.00%
195. Step 9700, train loss = 0.02, train accuracy = 100.00%
196. Step 9750, train loss = 0.08, train accuracy = 96.88%
197. Step 9800, train loss = 0.04, train accuracy = 100.00%
198. Step 9850, train loss = 0.06, train accuracy = 96.88%
199. Step 9900, train loss = 0.03, train accuracy = 100.00%
200. Step 9950, train loss = 0.03, train accuracy = 100.00%
201. Step 10000, train loss = 0.11, train accuracy = 93.75%
202. Step 10050, train loss = 0.02, train accuracy = 100.00%
203. Step 10100, train loss = 0.01, train accuracy = 100.00%
204. Step 10150, train loss = 0.05, train accuracy = 96.88%
205. Step 10200, train loss = 0.07, train accuracy = 96.88%
206. Step 10250, train loss = 0.06, train accuracy = 96.88%
207. Step 10300, train loss = 0.03, train accuracy = 100.00%
208. Step 10350, train loss = 0.08, train accuracy = 96.88%
209. Step 10400, train loss = 0.05, train accuracy = 96.88%
210. Step 10450, train loss = 0.02, train accuracy = 100.00%
211. Step 10500, train loss = 0.22, train accuracy = 93.75%
212. Step 10550, train loss = 0.06, train accuracy = 100.00%
213. Step 10600, train loss = 0.02, train accuracy = 100.00%
214. Step 10650, train loss = 0.02, train accuracy = 100.00%
215. Step 10700, train loss = 0.03, train accuracy = 100.00%
216. Step 10750, train loss = 0.15, train accuracy = 96.88%
217. Step 10800, train loss = 0.05, train accuracy = 100.00%
218. Step 10850, train loss = 0.02, train accuracy = 100.00%
219. Step 10900, train loss = 0.04, train accuracy = 96.88%
220. Step 10950, train loss = 0.05, train accuracy = 96.88%
221. Step 11000, train loss = 0.02, train accuracy = 100.00%
222. Step 11050, train loss = 0.10, train accuracy = 96.88%
223. Step 11100, train loss = 0.08, train accuracy = 96.88%
224. Step 11150, train loss = 0.02, train accuracy = 100.00%
225. Step 11200, train loss = 0.01, train accuracy = 100.00%
226. Step 11250, train loss = 0.06, train accuracy = 96.88%
227. Step 11300, train loss = 0.18, train accuracy = 93.75%
228. Step 11350, train loss = 0.02, train accuracy = 100.00%
229. Step 11400, train loss = 0.04, train accuracy = 100.00%
230. Step 11450, train loss = 0.03, train accuracy = 100.00%
231. Step 11500, train loss = 0.01, train accuracy = 100.00%
232. Step 11550, train loss = 0.02, train accuracy = 100.00%

核心代码

1.         weights = tf.get_variable('weights',  
2.                                   shape=[3, 3, 3, 16],  
3.                                   dtype=tf.float32,  
4.                                   initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  
5.         biases = tf.get_variable('biases',  
6.                                  shape=[16],  
7.                                  dtype=tf.float32,  
8.                                  initializer=tf.constant_initializer(0.1))  
9.         conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')  
10.         pre_activation = tf.nn.bias_add(conv, biases)  
11.         conv1 = tf.nn.relu(pre_activation, name=scope.name)  
12. with tf.variable_scope('pooling1_lrn') as scope:  
13.             pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')  
14.             norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')  
15. 
16. with tf.variable_scope('conv2') as scope:  
17.                 weights = tf.get_variable('weights',  
18.                                           shape=[3, 3, 16, 16],  
19.                                           dtype=tf.float32,  
20.                                           initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  
21.                 biases = tf.get_variable('biases',  
22.                                          shape=[16],  
23.                                          dtype=tf.float32,  
24.                                          initializer=tf.constant_initializer(0.1))  
25.                 conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')  
26.                 pre_activation = tf.nn.bias_add(conv, biases)  
27.                 conv2 = tf.nn.relu(pre_activation, name='conv2')  
28. 
29. 
30. with tf.variable_scope('pooling2_lrn') as scope:  
31.         norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')  
32.         pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')  
33. 
34. with tf.variable_scope('local3') as scope:  
35.         reshape = tf.reshape(pool2, shape=[batch_size, -1])  
36.         dim = reshape.get_shape()[1].value  
37.         weights = tf.get_variable('weights',  
38.                                   shape=[dim, 128],  
39.                                   dtype=tf.float32,  
40.                                   initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
41.         biases = tf.get_variable('biases',  
42.                                  shape=[128],  
43.                                  dtype=tf.float32,  
44.                                  initializer=tf.constant_initializer(0.1))  
45.     local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)  
46. 
47. # local4  
48. with tf.variable_scope('local4') as scope:  
49.         weights = tf.get_variable('weights',  
50.                                   shape=[128, 128],  
51.                                   dtype=tf.float32,  
52.                                   initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
53.         biases = tf.get_variable('biases',  
54.                                  shape=[128],  
55.                                  dtype=tf.float32,  
56.                                  initializer=tf.constant_initializer(0.1))  
57.         local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')  
58. 
59. 
60. with tf.variable_scope('softmax_linear') as scope:  
61.         weights = tf.get_variable('softmax_linear',  
62.                                   shape=[128, n_classes],  
63.                                   dtype=tf.float32,  
64.                                   initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
65.         biases = tf.get_variable('biases',  
66.                                  shape=[n_classes],  
67.                                  dtype=tf.float32,  
68.                                  initializer=tf.constant_initializer(0.1))  
69.         softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')


相关文章
|
24天前
|
机器学习/深度学习 编解码 PyTorch
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
|
1月前
|
机器学习/深度学习 算法 TensorFlow
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
38 0
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
基于深度学习的图像分类:使用卷积神经网络实现猫狗分类器
基于深度学习的图像分类:使用卷积神经网络实现猫狗分类器
23 0
|
22天前
|
机器学习/深度学习 测试技术 Ruby
YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
YOLOv5改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
44 2
|
1天前
|
前端开发 PyTorch 算法框架/工具
【基础实操】借用torch自带网络进行训练自己的图像数据
【基础实操】借用torch自带网络进行训练自己的图像数据
【基础实操】借用torch自带网络进行训练自己的图像数据
|
8天前
|
机器学习/深度学习 人工智能 编解码
Backbone往事 | AlexNet~EfficientNet,10多个网络演变铺满了炼丹师们的青葱岁月
Backbone往事 | AlexNet~EfficientNet,10多个网络演变铺满了炼丹师们的青葱岁月
28 0
|
16天前
|
算法
m基于Faster-RCNN网络的人员摔倒检测系统matlab仿真,带GUI操作界面
m基于Faster-RCNN网络的人员摔倒检测系统matlab仿真,带GUI操作界面
20 9
|
22天前
|
机器学习/深度学习 人工智能 API
人工智能应用工程师技能提升系列2、——TensorFlow2——keras高级API训练神经网络模型
人工智能应用工程师技能提升系列2、——TensorFlow2——keras高级API训练神经网络模型
14 0
|
29天前
|
机器学习/深度学习 网络架构 计算机视觉
CNN经典网络模型之GoogleNet论文解读
GoogleNet,也被称为Inception-v1,是由Google团队在2014年提出的一种深度卷积神经网络架构,专门用于图像分类和特征提取任务。它在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛中取得了优异的成绩,引入了"Inception"模块,这是一种多尺度卷积核并行结构,可以增强网络对不同尺度特征的感知能力。
|
1月前
|
机器学习/深度学习 算法 PyTorch
简单讲解CNN(卷积神经网络)
简单讲解CNN(卷积神经网络)
27 1

热门文章

最新文章

相关产品