CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

简介: CV之CNN:基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别


目录

基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

数据集介绍

输出结果

使用model.ckpt-6000模型预测

预测错误的只有一个案例,如下所示

训练结果

核心代码


基于tensorflow框架采用CNN(改进的AlexNet,训练/评估/推理)卷积神经网络算法实现猫狗图像分类识别

数据集介绍

数据下载Dogs vs. Cats Redux: Kernels Edition | Kaggle

    train文件夹里有25000张狗和猫的图片。这个文件夹中的每个图像都有标签作为文件名的一部分。测试文件夹包含12500张图片,根据数字id命名。对于测试集中的每个图像,您应该预测图像是一只狗的概率(1 =狗,0 =猫)。

输出结果

使用model.ckpt-6000模型预测

预测错误的只有一个案例,如下所示

序号 使用model.ckpt-4000模型预测 使用model.ckpt-6000模型预测 使用model.ckpt-8000模型预测 使用model.ckpt-10000模型预测 使用model.ckpt-12000模型预测
1 cat cat (1).jpg 猫的概率 0.631 cat (1).jpg 狗的概率 0.740 cat (1).jpg 狗的概率 0.781 cat (1).jpg 狗的概率 0.976 cat (1).jpg 狗的概率 0.991
2 cat (10).jpg 狗的概率 0.697 cat (10).jpg 猫的概率 0.566 cat (10).jpg 猫的概率 0.925 cat (10).jpg 猫的概率 0.925 cat (10).jpg 猫的概率 0.816
3 cat (11).jpg 猫的概率 0.927 cat (11).jpg 猫的概率 0.988 cat (11).jpg 猫的概率 1.000 cat (11).jpg 猫的概率 1.000 cat (11).jpg 猫的概率 1.000
4 cat (12).jpg 狗的概率 0.746 cat (12).jpg 狗的概率 0.723 cat (12).jpg 狗的概率 0.822 cat (12).jpg 狗的概率 0.998 cat (12).jpg 狗的概率 1.000
5 cat (13).jpg 猫的概率 0.933 cat (13).jpg 猫的概率 0.983 cat (13).jpg 猫的概率 0.997 cat (13).jpg 猫的概率 1.000 cat (13).jpg 猫的概率 1.000
6 cat (14).jpg 狗的概率 0.657 cat (14).jpg 猫的概率 0.597 cat (14).jpg 狗的概率 0.758 cat (14).jpg 狗的概率 0.695 cat (14).jpg 猫的概率 0.544
7 cat (15).jpg 狗的概率 0.578 cat (15).jpg 狗的概率 0.535 cat (15).jpg 狗的概率 0.526 cat (15).jpg 狗的概率 0.750 cat (15).jpg 狗的概率 0.569
8 cat (2).jpg 猫的概率 0.649 cat (2).jpg 猫的概率 0.637 cat (2).jpg 猫的概率 0.844 cat (2).jpg 猫的概率 0.996 cat (2).jpg 猫的概率 0.998
9 cat (3).jpg 狗的概率 0.668 cat (3).jpg 猫的概率 0.538 cat (3).jpg 猫的概率 0.710 cat (3).jpg 猫的概率 0.968 cat (3).jpg 猫的概率 0.995
10 cat (4).jpg 狗的概率 0.856 cat (4).jpg 狗的概率 0.780 cat (4).jpg 狗的概率 0.831 cat (4).jpg 狗的概率 0.974 cat (4).jpg 狗的概率 0.976
11 cat (5).jpg 猫的概率 0.812 cat (5).jpg 猫的概率 0.776 cat (5).jpg 猫的概率 0.505 cat (5).jpg 猫的概率 0.732 cat (5).jpg 狗的概率 0.608
12 cat (6).jpg 猫的概率 0.524 cat (6).jpg 狗的概率 0.661 cat (6).jpg 狗的概率 0.748 cat (6).jpg 狗的概率 0.970 cat (6).jpg 狗的概率 0.987
13 cat (7).jpg 狗的概率 0.612 cat (7).jpg 猫的概率 0.845 cat (7).jpg 猫的概率 0.894 cat (7).jpg 猫的概率 0.987 cat (7).jpg 猫的概率 0.728
14 cat (8).jpg 狗的概率 0.823 cat (8).jpg 狗的概率 0.948 cat (8).jpg 狗的概率 0.920 cat (8).jpg 狗的概率 0.982 cat (8).jpg 狗的概率 0.999
15 cat (9).jpg 猫的概率 0.697 cat (9).jpg 猫的概率 0.704 cat (9).jpg 狗的概率 0.819 cat (9).jpg 猫的概率 0.930 cat (9).jpg 狗的概率 0.718
16 dog dog (1).jpg 狗的概率 0.987 dog (1).jpg 狗的概率 0.995 dog (1).jpg 狗的概率 0.999 dog (1).jpg 狗的概率 1.000 dog (1).jpg 狗的概率 1.000
17 dog (10).jpg 狗的概率 0.628 dog (10).jpg 猫的概率 0.629 dog (10).jpg 猫的概率 0.994 dog (10).jpg 猫的概率 1.000 dog (10).jpg 猫的概率 1.000
18 dog (11).jpg 狗的概率 0.804 dog (11).jpg 狗的概率 0.879 dog (11).jpg 狗的概率 0.993 dog (11).jpg 狗的概率 1.000 dog (11).jpg 狗的概率 1.000
19 dog (12).jpg 猫的概率 0.704 dog (12).jpg 猫的概率 0.758 dog (12).jpg 狗的概率 0.503 dog (12).jpg 狗的概率 0.653 dog (12).jpg 猫的概率 0.985
20 dog (13).jpg 狗的概率 0.987 dog (13).jpg 狗的概率 0.997 dog (13).jpg 狗的概率 1.000 dog (13).jpg 狗的概率 1.000 dog (13).jpg 狗的概率 1.000
21 dog (14).jpg 狗的概率 0.815 dog (14).jpg 狗的概率 0.844 dog (14).jpg 狗的概率 0.904 dog (14).jpg 狗的概率 0.996 dog (14).jpg 狗的概率 0.950
22 dog (15).jpg 狗的概率 0.917 dog (15).jpg 狗的概率 0.984 dog (15).jpg 狗的概率 0.999 dog (15).jpg 狗的概率 1.000 dog (15).jpg 狗的概率 1.000
23 dog (16).jpg 狗的概率 0.883 dog (16).jpg 狗的概率 0.931 dog (16).jpg 狗的概率 0.830 dog (16).jpg 狗的概率 0.975 dog (16).jpg 狗的概率 0.983
24 dog (2).jpg 狗的概率 0.934 dog (2).jpg 狗的概率 0.982 dog (2).jpg 狗的概率 0.998 dog (2).jpg 狗的概率 1.000 dog (2).jpg 狗的概率 1.000
25 dog (3).jpg 狗的概率 0.993 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000 dog (3).jpg 狗的概率 1.000
26 dog (4).jpg 狗的概率 0.693 dog (4).jpg 狗的概率 0.754 dog (4).jpg 狗的概率 0.976 dog (4).jpg 狗的概率 0.515 dog (4).jpg 狗的概率 0.995
27 dog (5).jpg 狗的概率 0.916 dog (5).jpg 狗的概率 0.976 dog (5).jpg 狗的概率 0.993 dog (5).jpg 狗的概率 0.998 dog (5).jpg 狗的概率 1.000
28 dog (6).jpg 狗的概率 0.947 dog (6).jpg 狗的概率 0.989 dog (6).jpg 狗的概率 0.999 dog (6).jpg 狗的概率 1.000 dog (6).jpg 狗的概率 1.000
29 dog (7).jpg 猫的概率 0.526 dog (7).jpg 猫的概率 0.685 dog (7).jpg 猫的概率 0.961 dog (7).jpg 猫的概率 1.000 dog (7).jpg 猫的概率 1.000
30 dog (8).jpg 狗的概率 0.981 dog (8).jpg 狗的概率 0.998 dog (8).jpg 狗的概率 1.000 dog (8).jpg 狗的概率 1.000 dog (8).jpg 狗的概率 1.000
31 dog (9).jpg 狗的概率 0.899 dog (9).jpg 狗的概率 0.983 dog (9).jpg 狗的概率 0.999 dog (9).jpg 狗的概率 1.000 dog (9).jpg 狗的概率 1.000

训练结果

1. Step 0, train loss = 0.69, train accuracy = 78.12%
2. Step 50, train loss = 0.69, train accuracy = 43.75%
3. Step 100, train loss = 0.70, train accuracy = 46.88%
4. Step 150, train loss = 0.65, train accuracy = 75.00%
5. Step 200, train loss = 0.66, train accuracy = 59.38%
6. Step 250, train loss = 0.66, train accuracy = 62.50%
7. Step 300, train loss = 0.72, train accuracy = 40.62%
8. Step 350, train loss = 0.66, train accuracy = 62.50%
9. Step 400, train loss = 0.58, train accuracy = 68.75%
10. Step 450, train loss = 0.70, train accuracy = 65.62%
11. Step 500, train loss = 0.68, train accuracy = 56.25%
12. Step 550, train loss = 0.51, train accuracy = 81.25%
13. Step 600, train loss = 0.54, train accuracy = 75.00%
14. Step 650, train loss = 0.64, train accuracy = 68.75%
15. Step 700, train loss = 0.69, train accuracy = 53.12%
16. Step 750, train loss = 0.57, train accuracy = 71.88%
17. Step 800, train loss = 0.80, train accuracy = 50.00%
18. Step 850, train loss = 0.62, train accuracy = 59.38%
19. Step 900, train loss = 0.59, train accuracy = 65.62%
20. Step 950, train loss = 0.54, train accuracy = 71.88%
21. Step 1000, train loss = 0.57, train accuracy = 68.75%
22. Step 1050, train loss = 0.56, train accuracy = 78.12%
23. Step 1100, train loss = 0.66, train accuracy = 59.38%
24. Step 1150, train loss = 0.50, train accuracy = 84.38%
25. Step 1200, train loss = 0.46, train accuracy = 81.25%
26. Step 1250, train loss = 0.57, train accuracy = 59.38%
27. Step 1300, train loss = 0.37, train accuracy = 81.25%
28. Step 1350, train loss = 0.64, train accuracy = 62.50%
29. Step 1400, train loss = 0.44, train accuracy = 81.25%
30. Step 1450, train loss = 0.46, train accuracy = 84.38%
31. Step 1500, train loss = 0.50, train accuracy = 71.88%
32. Step 1550, train loss = 0.58, train accuracy = 62.50%
33. Step 1600, train loss = 0.43, train accuracy = 75.00%
34. Step 1650, train loss = 0.55, train accuracy = 71.88%
35. Step 1700, train loss = 0.50, train accuracy = 71.88%
36. Step 1750, train loss = 0.46, train accuracy = 75.00%
37. Step 1800, train loss = 0.81, train accuracy = 53.12%
38. Step 1850, train loss = 0.41, train accuracy = 90.62%
39. Step 1900, train loss = 0.65, train accuracy = 68.75%
40. Step 1950, train loss = 0.37, train accuracy = 84.38%
41. Step 2000, train loss = 0.39, train accuracy = 81.25%
42. Step 2050, train loss = 0.45, train accuracy = 84.38%
43. Step 2100, train loss = 0.44, train accuracy = 78.12%
44. Step 2150, train loss = 0.59, train accuracy = 65.62%
45. Step 2200, train loss = 0.51, train accuracy = 78.12%
46. Step 2250, train loss = 0.42, train accuracy = 81.25%
47. Step 2300, train loss = 0.32, train accuracy = 87.50%
48. Step 2350, train loss = 0.48, train accuracy = 75.00%
49. Step 2400, train loss = 0.54, train accuracy = 71.88%
50. Step 2450, train loss = 0.51, train accuracy = 71.88%
51. Step 2500, train loss = 0.73, train accuracy = 59.38%
52. Step 2550, train loss = 0.52, train accuracy = 78.12%
53. Step 2600, train loss = 0.65, train accuracy = 62.50%
54. Step 2650, train loss = 0.52, train accuracy = 71.88%
55. Step 2700, train loss = 0.48, train accuracy = 71.88%
56. Step 2750, train loss = 0.37, train accuracy = 84.38%
57. Step 2800, train loss = 0.46, train accuracy = 78.12%
58. Step 2850, train loss = 0.40, train accuracy = 84.38%
59. Step 2900, train loss = 0.45, train accuracy = 81.25%
60. Step 2950, train loss = 0.36, train accuracy = 84.38%
61. Step 3000, train loss = 0.46, train accuracy = 75.00%
62. Step 3050, train loss = 0.53, train accuracy = 71.88%
63. Step 3100, train loss = 0.37, train accuracy = 84.38%
64. Step 3150, train loss = 0.53, train accuracy = 75.00%
65. Step 3200, train loss = 0.52, train accuracy = 75.00%
66. Step 3250, train loss = 0.62, train accuracy = 65.62%
67. Step 3300, train loss = 0.58, train accuracy = 71.88%
68. Step 3350, train loss = 0.71, train accuracy = 65.62%
69. Step 3400, train loss = 0.43, train accuracy = 78.12%
70. Step 3450, train loss = 0.46, train accuracy = 78.12%
71. Step 3500, train loss = 0.46, train accuracy = 71.88%
72. Step 3550, train loss = 0.53, train accuracy = 68.75%
73. Step 3600, train loss = 0.44, train accuracy = 75.00%
74. Step 3650, train loss = 0.55, train accuracy = 65.62%
75. Step 3700, train loss = 0.62, train accuracy = 75.00%
76. Step 3750, train loss = 0.48, train accuracy = 75.00%
77. Step 3800, train loss = 0.66, train accuracy = 53.12%
78. Step 3850, train loss = 0.53, train accuracy = 75.00%
79. Step 3900, train loss = 0.36, train accuracy = 81.25%
80. Step 3950, train loss = 0.37, train accuracy = 87.50%
81. Step 4000, train loss = 0.46, train accuracy = 78.12%
82. Step 4050, train loss = 0.36, train accuracy = 84.38%
83. Step 4100, train loss = 0.34, train accuracy = 78.12%
84. Step 4150, train loss = 0.48, train accuracy = 78.12%
85. Step 4200, train loss = 0.43, train accuracy = 87.50%
86. Step 4250, train loss = 0.34, train accuracy = 84.38%
87. Step 4300, train loss = 0.28, train accuracy = 87.50%
88. Step 4350, train loss = 0.19, train accuracy = 96.88%
89. Step 4400, train loss = 0.46, train accuracy = 71.88%
90. Step 4450, train loss = 0.33, train accuracy = 84.38%
91. Step 4500, train loss = 0.55, train accuracy = 75.00%
92. Step 4550, train loss = 0.31, train accuracy = 93.75%
93. Step 4600, train loss = 0.30, train accuracy = 84.38%
94. Step 4650, train loss = 0.38, train accuracy = 84.38%
95. Step 4700, train loss = 0.36, train accuracy = 84.38%
96. Step 4750, train loss = 0.32, train accuracy = 87.50%
97. Step 4800, train loss = 0.36, train accuracy = 81.25%
98. Step 4850, train loss = 0.36, train accuracy = 87.50%
99. Step 4900, train loss = 0.49, train accuracy = 71.88%
100. Step 4950, train loss = 0.51, train accuracy = 68.75%
101. Step 5000, train loss = 0.59, train accuracy = 68.75%
102. Step 5050, train loss = 0.55, train accuracy = 75.00%
103. Step 5100, train loss = 0.71, train accuracy = 68.75%
104. Step 5150, train loss = 0.48, train accuracy = 71.88%
105. Step 5200, train loss = 0.39, train accuracy = 90.62%
106. Step 5250, train loss = 0.49, train accuracy = 81.25%
107. Step 5300, train loss = 0.36, train accuracy = 81.25%
108. Step 5350, train loss = 0.31, train accuracy = 90.62%
109. Step 5400, train loss = 0.39, train accuracy = 87.50%
110. Step 5450, train loss = 0.34, train accuracy = 78.12%
111. Step 5500, train loss = 0.29, train accuracy = 84.38%
112. Step 5550, train loss = 0.21, train accuracy = 93.75%
113. Step 5600, train loss = 0.41, train accuracy = 78.12%
114. Step 5650, train loss = 0.38, train accuracy = 84.38%
115. Step 5700, train loss = 0.27, train accuracy = 87.50%
116. Step 5750, train loss = 0.24, train accuracy = 90.62%
117. Step 5800, train loss = 0.17, train accuracy = 96.88%
118. Step 5850, train loss = 0.23, train accuracy = 93.75%
119. Step 5900, train loss = 0.37, train accuracy = 71.88%
120. Step 5950, train loss = 0.49, train accuracy = 71.88%
121. Step 6000, train loss = 0.43, train accuracy = 81.25%
122. Step 6050, train loss = 0.33, train accuracy = 87.50%
123. Step 6100, train loss = 0.46, train accuracy = 75.00%
124. Step 6150, train loss = 0.61, train accuracy = 81.25%
125. Step 6200, train loss = 0.34, train accuracy = 84.38%
126. Step 6250, train loss = 0.63, train accuracy = 71.88%
127. Step 6300, train loss = 0.21, train accuracy = 90.62%
128. Step 6350, train loss = 0.21, train accuracy = 90.62%
129. Step 6400, train loss = 0.27, train accuracy = 87.50%
130. Step 6450, train loss = 0.17, train accuracy = 87.50%
131. Step 6500, train loss = 0.34, train accuracy = 87.50%
132. Step 6550, train loss = 0.34, train accuracy = 87.50%
133. Step 6600, train loss = 0.32, train accuracy = 84.38%
134. Step 6650, train loss = 0.39, train accuracy = 84.38%
135. Step 6700, train loss = 0.38, train accuracy = 84.38%
136. Step 6750, train loss = 0.41, train accuracy = 84.38%
137. Step 6800, train loss = 0.49, train accuracy = 81.25%
138. Step 6850, train loss = 0.36, train accuracy = 84.38%
139. Step 6900, train loss = 0.20, train accuracy = 93.75%
140. Step 6950, train loss = 0.13, train accuracy = 93.75%
141. Step 7000, train loss = 0.31, train accuracy = 87.50%
142. Step 7050, train loss = 0.18, train accuracy = 93.75%
143. Step 7100, train loss = 0.23, train accuracy = 90.62%
144. Step 7150, train loss = 0.13, train accuracy = 96.88%
145. Step 7200, train loss = 0.14, train accuracy = 96.88%
146. Step 7250, train loss = 0.32, train accuracy = 84.38%
147. Step 7300, train loss = 0.18, train accuracy = 93.75%
148. Step 7350, train loss = 0.14, train accuracy = 100.00%
149. Step 7400, train loss = 0.60, train accuracy = 75.00%
150. Step 7450, train loss = 0.20, train accuracy = 93.75%
151. Step 7500, train loss = 0.13, train accuracy = 93.75%
152. Step 7550, train loss = 0.22, train accuracy = 90.62%
153. Step 7600, train loss = 0.13, train accuracy = 96.88%
154. Step 7650, train loss = 0.20, train accuracy = 93.75%
155. Step 7700, train loss = 0.24, train accuracy = 90.62%
156. Step 7750, train loss = 0.19, train accuracy = 93.75%
157. Step 7800, train loss = 0.16, train accuracy = 93.75%
158. Step 7850, train loss = 0.08, train accuracy = 100.00%
159. Step 7900, train loss = 0.10, train accuracy = 96.88%
160. Step 7950, train loss = 0.13, train accuracy = 93.75%
161. Step 8000, train loss = 0.18, train accuracy = 90.62%
162. Step 8050, train loss = 0.27, train accuracy = 93.75%
163. Step 8100, train loss = 0.04, train accuracy = 100.00%
164. Step 8150, train loss = 0.27, train accuracy = 87.50%
165. Step 8200, train loss = 0.06, train accuracy = 96.88%
166. Step 8250, train loss = 0.12, train accuracy = 100.00%
167. Step 8300, train loss = 0.28, train accuracy = 87.50%
168. Step 8350, train loss = 0.24, train accuracy = 90.62%
169. Step 8400, train loss = 0.16, train accuracy = 93.75%
170. Step 8450, train loss = 0.11, train accuracy = 93.75%
171. Step 8500, train loss = 0.13, train accuracy = 96.88%
172. Step 8550, train loss = 0.05, train accuracy = 100.00%
173. Step 8600, train loss = 0.10, train accuracy = 93.75%
174. Step 8650, train loss = 0.14, train accuracy = 100.00%
175. Step 8700, train loss = 0.21, train accuracy = 90.62%
176. Step 8750, train loss = 0.09, train accuracy = 96.88%
177. Step 8800, train loss = 0.11, train accuracy = 96.88%
178. Step 8850, train loss = 0.10, train accuracy = 96.88%
179. Step 8900, train loss = 0.12, train accuracy = 93.75%
180. Step 8950, train loss = 0.48, train accuracy = 81.25%
181. Step 9000, train loss = 0.07, train accuracy = 100.00%
182. Step 9050, train loss = 0.03, train accuracy = 100.00%
183. Step 9100, train loss = 0.10, train accuracy = 93.75%
184. Step 9150, train loss = 0.05, train accuracy = 96.88%
185. Step 9200, train loss = 0.04, train accuracy = 100.00%
186. Step 9250, train loss = 0.03, train accuracy = 100.00%
187. Step 9300, train loss = 0.04, train accuracy = 96.88%
188. Step 9350, train loss = 0.08, train accuracy = 100.00%
189. Step 9400, train loss = 0.05, train accuracy = 100.00%
190. Step 9450, train loss = 0.15, train accuracy = 90.62%
191. Step 9500, train loss = 0.03, train accuracy = 100.00%
192. Step 9550, train loss = 0.05, train accuracy = 100.00%
193. Step 9600, train loss = 0.15, train accuracy = 96.88%
194. Step 9650, train loss = 0.03, train accuracy = 100.00%
195. Step 9700, train loss = 0.02, train accuracy = 100.00%
196. Step 9750, train loss = 0.08, train accuracy = 96.88%
197. Step 9800, train loss = 0.04, train accuracy = 100.00%
198. Step 9850, train loss = 0.06, train accuracy = 96.88%
199. Step 9900, train loss = 0.03, train accuracy = 100.00%
200. Step 9950, train loss = 0.03, train accuracy = 100.00%
201. Step 10000, train loss = 0.11, train accuracy = 93.75%
202. Step 10050, train loss = 0.02, train accuracy = 100.00%
203. Step 10100, train loss = 0.01, train accuracy = 100.00%
204. Step 10150, train loss = 0.05, train accuracy = 96.88%
205. Step 10200, train loss = 0.07, train accuracy = 96.88%
206. Step 10250, train loss = 0.06, train accuracy = 96.88%
207. Step 10300, train loss = 0.03, train accuracy = 100.00%
208. Step 10350, train loss = 0.08, train accuracy = 96.88%
209. Step 10400, train loss = 0.05, train accuracy = 96.88%
210. Step 10450, train loss = 0.02, train accuracy = 100.00%
211. Step 10500, train loss = 0.22, train accuracy = 93.75%
212. Step 10550, train loss = 0.06, train accuracy = 100.00%
213. Step 10600, train loss = 0.02, train accuracy = 100.00%
214. Step 10650, train loss = 0.02, train accuracy = 100.00%
215. Step 10700, train loss = 0.03, train accuracy = 100.00%
216. Step 10750, train loss = 0.15, train accuracy = 96.88%
217. Step 10800, train loss = 0.05, train accuracy = 100.00%
218. Step 10850, train loss = 0.02, train accuracy = 100.00%
219. Step 10900, train loss = 0.04, train accuracy = 96.88%
220. Step 10950, train loss = 0.05, train accuracy = 96.88%
221. Step 11000, train loss = 0.02, train accuracy = 100.00%
222. Step 11050, train loss = 0.10, train accuracy = 96.88%
223. Step 11100, train loss = 0.08, train accuracy = 96.88%
224. Step 11150, train loss = 0.02, train accuracy = 100.00%
225. Step 11200, train loss = 0.01, train accuracy = 100.00%
226. Step 11250, train loss = 0.06, train accuracy = 96.88%
227. Step 11300, train loss = 0.18, train accuracy = 93.75%
228. Step 11350, train loss = 0.02, train accuracy = 100.00%
229. Step 11400, train loss = 0.04, train accuracy = 100.00%
230. Step 11450, train loss = 0.03, train accuracy = 100.00%
231. Step 11500, train loss = 0.01, train accuracy = 100.00%
232. Step 11550, train loss = 0.02, train accuracy = 100.00%

核心代码

1.         weights = tf.get_variable('weights',  
2.                                   shape=[3, 3, 3, 16],  
3.                                   dtype=tf.float32,  
4.                                   initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  
5.         biases = tf.get_variable('biases',  
6.                                  shape=[16],  
7.                                  dtype=tf.float32,  
8.                                  initializer=tf.constant_initializer(0.1))  
9.         conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')  
10.         pre_activation = tf.nn.bias_add(conv, biases)  
11.         conv1 = tf.nn.relu(pre_activation, name=scope.name)  
12. with tf.variable_scope('pooling1_lrn') as scope:  
13.             pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')  
14.             norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')  
15. 
16. with tf.variable_scope('conv2') as scope:  
17.                 weights = tf.get_variable('weights',  
18.                                           shape=[3, 3, 16, 16],  
19.                                           dtype=tf.float32,  
20.                                           initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  
21.                 biases = tf.get_variable('biases',  
22.                                          shape=[16],  
23.                                          dtype=tf.float32,  
24.                                          initializer=tf.constant_initializer(0.1))  
25.                 conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')  
26.                 pre_activation = tf.nn.bias_add(conv, biases)  
27.                 conv2 = tf.nn.relu(pre_activation, name='conv2')  
28. 
29. 
30. with tf.variable_scope('pooling2_lrn') as scope:  
31.         norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')  
32.         pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')  
33. 
34. with tf.variable_scope('local3') as scope:  
35.         reshape = tf.reshape(pool2, shape=[batch_size, -1])  
36.         dim = reshape.get_shape()[1].value  
37.         weights = tf.get_variable('weights',  
38.                                   shape=[dim, 128],  
39.                                   dtype=tf.float32,  
40.                                   initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
41.         biases = tf.get_variable('biases',  
42.                                  shape=[128],  
43.                                  dtype=tf.float32,  
44.                                  initializer=tf.constant_initializer(0.1))  
45.     local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)  
46. 
47. # local4  
48. with tf.variable_scope('local4') as scope:  
49.         weights = tf.get_variable('weights',  
50.                                   shape=[128, 128],  
51.                                   dtype=tf.float32,  
52.                                   initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
53.         biases = tf.get_variable('biases',  
54.                                  shape=[128],  
55.                                  dtype=tf.float32,  
56.                                  initializer=tf.constant_initializer(0.1))  
57.         local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')  
58. 
59. 
60. with tf.variable_scope('softmax_linear') as scope:  
61.         weights = tf.get_variable('softmax_linear',  
62.                                   shape=[128, n_classes],  
63.                                   dtype=tf.float32,  
64.                                   initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
65.         biases = tf.get_variable('biases',  
66.                                  shape=[n_classes],  
67.                                  dtype=tf.float32,  
68.                                  initializer=tf.constant_initializer(0.1))  
69.         softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')


相关文章
|
17天前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
47 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
16天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
60 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
15天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
44 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
27天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
2月前
|
机器学习/深度学习
|
2月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
44 0
|
2月前
|
安全 Apache 数据安全/隐私保护
你的Wicket应用安全吗?揭秘在Apache Wicket中实现坚不可摧的安全认证策略
【8月更文挑战第31天】在当前的网络环境中,安全性是任何应用程序的关键考量。Apache Wicket 是一个强大的 Java Web 框架,提供了丰富的工具和组件,帮助开发者构建安全的 Web 应用程序。本文介绍了如何在 Wicket 中实现安全认证,
33 0
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:使用Python和TensorFlow构建你的第一个神经网络
【8月更文挑战第31天】 本文是一篇面向初学者的深度学习指南,旨在通过简洁明了的语言引导读者了解并实现他们的第一个神经网络。我们将一起探索深度学习的基本概念,并逐步构建一个能够识别手写数字的简单模型。文章将展示如何使用Python语言和TensorFlow框架来训练我们的网络,并通过直观的例子使抽象的概念具体化。无论你是编程新手还是深度学习领域的新兵,这篇文章都将成为你探索这个激动人心领域的垫脚石。
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
从零到精通:TensorFlow与卷积神经网络(CNN)助你成为图像识别高手的终极指南——深入浅出教你搭建首个猫狗分类器,附带实战代码与训练技巧揭秘
【8月更文挑战第31天】本文通过杂文形式介绍了如何利用 TensorFlow 和卷积神经网络(CNN)构建图像识别系统,详细演示了从数据准备、模型构建到训练与评估的全过程。通过具体示例代码,展示了使用 Keras API 训练猫狗分类器的步骤,旨在帮助读者掌握图像识别的核心技术。此外,还探讨了图像识别在物体检测、语义分割等领域的广泛应用前景。
13 0
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其应用
【9月更文挑战第24天】本文将深入探讨深度学习中的一种重要模型——卷积神经网络(CNN)。我们将通过简单的代码示例,了解CNN的工作原理和应用场景。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
36 1
下一篇
无影云桌面