【实时数仓篇】(04)利用 Flink 实现实时状态复用场景

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,1000CU*H 3个月
简介: 【实时数仓篇】(04)利用 Flink 实现实时状态复用场景

文章目录


一、浅谈实时数仓

1.1 实时数仓体系

1.2 实时 & 离线


二、状态复用场景

2.1 问题

2.2 解决方案

2.2.1 方案一

2.2.2 方案二


一、浅谈实时数仓


整理自:【实时数仓篇】利用 Flink 实现实时状态复用场景

讲师:李晨(菜鸟 数据工程师)


1.1 实时数仓体系




1.2 实时 & 离线



TT 类似于Kafka ,选用 TT ,是因为既可以做离线计算的数据源,也可以做实时计算的数据源。


架构的亮点:connector 实现了离线计算的数据和实时计算的互通。


二、状态复用场景


2.1 问题



问题

场景一:job的operator变化(sql修改),checkpoint无法自动恢复,savepoint恢复机制无法满足,比如增加group by 和 join 。 集群或调度异常情况下导致job在恢复重启时路径 or 目录丢失,重新消费历史数据会依赖上游数据源存储失效。比如近一个月的数据,要将一个月甚至更长的消息存储在Kafka/TT里。


场景二:用户state生命周期(ttl)设置过小可能会导致一些长周期业务数据到期join不到丢失,retract 时产生NPE报错等。设置过大,资源消耗大。


2.2 解决方案


2.2.1 方案一


last_value: https://www.alibabacloud.com/help/zh/faq-detail/62791.htm


2.2.2 方案二


相关实践学习
基于Hologres轻量实时的高性能OLAP分析
本教程基于GitHub Archive公开数据集,通过DataWorks将GitHub中的项⽬、行为等20多种事件类型数据实时采集至Hologres进行分析,同时使用DataV内置模板,快速搭建实时可视化数据大屏,从开发者、项⽬、编程语⾔等多个维度了解GitHub实时数据变化情况。
目录
相关文章
|
6月前
|
存储 消息中间件 OLAP
基于 Flink+Paimon+Hologres 搭建淘天集团湖仓一体数据链路
本文整理自淘天集团高级数据开发工程师朱奥在Flink Forward Asia 2024的分享,围绕实时数仓优化展开。内容涵盖项目背景、核心策略、解决方案、项目价值及未来计划五部分。通过引入Paimon和Hologres技术,解决当前流批存储不统一、实时数据可见性差等痛点,实现流批一体存储与高效近实时数据加工。项目显著提升了数据时效性和开发运维效率,降低了使用门槛与成本,并规划未来在集团内推广湖仓一体架构,探索更多技术创新场景。
1392 3
基于 Flink+Paimon+Hologres 搭建淘天集团湖仓一体数据链路
|
7月前
|
消息中间件 存储 监控
Lalamove基于Flink实时湖仓演进之路
本文由货拉拉国际化技术部资深数据仓库工程师林海亮撰写,围绕Flink在实时数仓中的应用展开。文章首先介绍了Lalamove业务背景,随后分析了Flink在实时看板、数据服务API、数据监控及数据分析中的应用与挑战,如多数据中心、时区差异、上游改造频繁及高成本问题。接着阐述了实时数仓架构从无分层到引入Paimon湖仓的演进过程,解决了数据延迟、兼容性及资源消耗等问题。最后展望未来,提出基于Fluss+Paimon优化架构的方向,进一步提升性能与降低成本。
318 11
Lalamove基于Flink实时湖仓演进之路
|
7月前
|
存储 监控 数据挖掘
京东物流基于Flink & StarRocks的湖仓建设实践
本文整理自京东物流高级数据开发工程师梁宝彬在Flink Forward Asia 2024的分享,聚焦实时湖仓的探索与建设、应用实践、问题思考及未来展望。内容涵盖京东物流通过Flink和Paimon等技术构建实时湖仓体系的过程,解决复杂业务场景下的数据分析挑战,如多维OLAP分析、大屏监控等。同时,文章详细介绍了基于StarRocks的湖仓一体方案,优化存储成本并提升查询效率,以及存算分离的应用实践。最后,对未来数据服务的发展方向进行了展望,计划推广长周期数据存储服务和原生数据湖建设,进一步提升数据分析能力。
711 1
京东物流基于Flink & StarRocks的湖仓建设实践
|
2月前
|
存储 JSON 数据处理
Flink基于Paimon的实时湖仓解决方案的演进
本文源自Apache CommunityOverCode Asia 2025,阿里云专家苏轩楠分享Flink与Paimon构建实时湖仓的演进实践。深度解析Variant数据类型、Lookup Join优化等关键技术,提升半结构化数据处理效率与系统可扩展性,推动实时湖仓在生产环境的高效落地。
342 0
Flink基于Paimon的实时湖仓解决方案的演进
|
3月前
|
SQL 存储 运维
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
本文介绍了 Apache Doris 在菜鸟的大规模落地的实践经验,菜鸟为什么选择 Doris,以及 Doris 如何在菜鸟从 0 开始,一步步的验证、落地,到如今上万核的规模,服务于各个业务线,Doris 已然成为菜鸟 OLAP 数据分析的最优选型。
281 2
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
|
2月前
|
存储 人工智能 监控
淘宝闪购基于Flink&Paimon的Lakehouse生产实践:从实时数仓到湖仓一体化的演进之路
本文整理自淘宝闪购(饿了么)大数据架构师王沛斌在 Flink Forward Asia 2025 上海站的分享,深度解析其基于 Apache Flink 与 Paimon 的 Lakehouse 架构演进与落地实践,涵盖实时数仓发展、技术选型、平台建设及未来展望。
679 0
淘宝闪购基于Flink&Paimon的Lakehouse生产实践:从实时数仓到湖仓一体化的演进之路
|
4月前
|
存储 传感器 数据采集
什么是实时数仓?实时数仓又有哪些应用场景?
实时数仓是一种能实现秒级数据更新和分析的系统,适用于电商、金融、物流等需要快速响应的场景。相比传统数仓,它具备更高的时效性和并发处理能力,能够帮助企业及时捕捉业务动态,提升决策效率。本文详细解析了其实现架构与核心特点,并结合实际案例说明其应用价值。
|
6月前
|
SQL 关系型数据库 MySQL
客户说|保险极客引入阿里云AnalyticDB,多业务场景效率大幅提升
“通过引入AnalyticDB,我们在复杂数据查询和实时同步方面取得了显著突破,其分布式、弹性与云计算的优势得以充分体现,帮助企业快速响应业务变化,实现降本增效。AnalyticDB的卓越表现保障了保险极客数据服务的品质和效率。”
|
8月前
|
存储 缓存 数据挖掘
Flink + Doris 实时湖仓解决方案
本文整理自SelectDB技术副总裁陈明雨在Flink Forward Asia 2024的分享,聚焦Apache Doris与湖仓一体解决方案。内容涵盖三部分:一是介绍Apache Doris,一款高性能实时分析数据库,支持多场景应用;二是基于Doris、Flink和Paimon的湖仓解决方案,解决批流融合与数据一致性挑战;三是Doris社区生态及云原生发展,包括存算分离架构与600多位贡献者的活跃社区。文章深入探讨了Doris在性能、易用性及场景支持上的优势,并展示了其在多维分析、日志分析和湖仓分析中的实际应用案例。
644 17
Flink + Doris 实时湖仓解决方案
|
7月前
|
存储 SQL 关系型数据库
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
拉卡拉早期基于 Lambda 架构构建数据系统面临存储成本高、实时写入性能差、复杂查询耗时久、组件维护复杂等问题。为此,拉卡拉选择使用 Apache Doris 替换 Elasticsearch、Hive、Hbase、TiDB、Oracle / MySQL 等组件,实现了 OLAP 引擎的统一、查询性能提升 15 倍、资源减少 52% 的显著成效。
336 6
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%