实时计算 Flink版产品使用合集之是否支持 Oracle 分区表

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC这个是啥情况呢 一直跳这个.. 没有实际的数据?


Flink CDC这个是啥情况呢 一直跳这个.. 没有实际的数据?

mysql cdc 2.2.0


参考回答:

Flink CDC是一种基于数据库的日志CDC技术,实现了全增量一体化读取的数据集成框架。它通过搭配Flink计算框架,可以高效实现海量数据的实时集成。

关于Flink CDC一直跳的问题,这可能与多个因素有关。例如,可能是由于数据源的变化速度过快,导致Flink CDC无法跟上变化速度,从而产生错误。也可能是由于数据源中的某些数据项存在问题,导致Flink CDC无法正确读取或处理。

为了解决这个问题,可以尝试以下方法:

  1. 调整Flink CDC的配置参数,例如增加读取数据的并发度、增加处理数据的并行度等。
  2. 检查数据源是否存在问题,例如是否存在数据格式不正确、数据项缺失等情况。
  3. 对数据进行预处理或清洗,以确保数据的质量和完整性。
  4. 如果问题仍然存在,可能需要进一步检查Flink CDC的实现代码,以确定是否存在其他问题或错误。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567906


问题二:Flink CDC支持oracle分区表吗?


Flink CDC支持oracle分区表吗?


参考回答:

是的,Flink CDC的Oracle CDC Connector支持同步带有分区表的数据,但需要根据具体的分区方案进行配置。在Oracle数据库中,分区表是指将表分割成多个小的、相互独立的部分,称为分区,每个分区可以存储不同的数据。需要注意的是,Flink CDC的Oracle CDC Connector 2.4.1版本目前还不支持直接读取分区表。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570644


问题三:Flink CDC有个cdc的场景需求,有没有好的方案?


Flink CDC有个cdc的场景需求,

1、上游mysql是同一个实例、同一个库下的三张不同结构的表

2、下游是一张hudi表。考虑基于表名和时间做分区

3、hudi表的时间分区字段来自于三张mysql表的不同字段

4、使用flinksql实现。

请问:有没有好的方案,将读到的三张mysql表的数据,使用JSON给包起来,hudi表事件分区字段来自于不同表的不同字段,事件分区来自于表名?


参考回答:

将读到的三张表的数据,使用 json 包起来,本身就不是flinkCDC sql 模式能做的,sql 模式下只能做单表,使用 stream 模式,可以满足你这个需求。sql模式如果支持自定义deserializer 就可以


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567903


问题四:Flink CDC谁有用Native Kubernetes 部署flink 啊?


Flink CDC谁有用Native Kubernetes 部署flink 啊,我部署了跑不起来,java 和python都起不来?

看着挺简单的。但是一直报错,用kubekey 部署的单节点k8s


参考回答:

可以尝试以下步骤来排查 Flink Native Kubernetes 下部署失败的原因:

  1. Dockerfile 检查:确认 Dockerfile 中的内容正确无误。
  2. 访问权限:检查访问 Flink 和 Zookeeper 的网络和磁盘空间是否充足。
  3. 配置文件检查:确定配置文件中正确的参数值。
  4. 日志检查:查找 Flink 容器的日志以了解详细的情况。
  5. K8s 版本:检查 K8s 版本是否符合要求。
  6. Flink 版本:请确保您正在使用的 Flink 版本与 K8s 版本兼容。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567901


问题五:Flink CDC1.13.6读取binlog是按照row读取还是按照事务的粒度读取的?


Flink CDC1.13.6读取binlog是按照row读取还是按照事务的粒度读取的?我理解是应该是这个大事务一次性处理了5千万数据,而flink的内存撑不下,导致读取事务数据一次性打爆了


参考回答:

Flink CDC 是按照事务的粒度读取 binlog 的。在 Flink CDC 中,每个事务都会被转换成一系列的 Change Records,每个 Change Record 对应一行数据的变化。当一个事务提交时,所有的 Change Records 就会被一起发送出去,形成一个事务事件流。这样做的好处是可以保持数据的一致性和完整性。

然而,当事务涉及的数据量太大时,可能导致 Flink 内存不足,从而引发 OutOfMemoryError 错误。为了避免这种情况发生,可以考虑以下几个解决方案:

  1. 增加 Flink 内存分配:增加 Flink 执行时分配给 TaskManager 的内存,以便能够容纳更大的事务数据量。
  2. 设置 maxBatchSize 参数:可以通过调整 maxBatchSize 参数限制单次发送的数据量,避免过大的事务被打包成单个消息发送出去。
  3. 使用流处理模式而不是批处理模式:在流处理模式下,Flink 可以持续地处理事务,而不是一次性接收全部数据。这样可以有效减轻内存压力,并且能够在遇到大事务时避免 OutOfMemoryError 错误。
  4. 建立缓冲区来拆解大型事务:如果仍然无法避免大事务,那么可以建立一个缓冲区来拆解大型事务,并将其分割成若干个小事务发送出去。这种方法需要额外的编程和设计,但是在处理大数据量时具有更高的灵活性。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567897


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
4月前
|
数据采集 监控 Oracle
实时计算 Flink版产品使用问题之如何从Oracle物理备用库中进行实时数据抽取
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用问题之Oracle数据库是集群部署的,怎么进行数据同步
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
SQL Oracle Java
实时计算 Flink版产品使用问题之采集Oracle数据时,为什么无法采集到其他TABLESPACE的表
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
分布式计算 Oracle 关系型数据库
实时计算 Flink版产品使用问题之获取Oracle的数据时无法获取clob类型的数据,该怎么办
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
SQL 存储 运维
如何降低 Flink 开发和运维成本?阿里云实时计算平台建设实践
本次分享主要介绍阿里云实时计算平台从 2.0 基于 Yarn 的架构到 3.0 云原生时代的演进,以及在 3.0 平台上一些核心功能的建设实践,如健康分,智能诊断,细粒度资源,作业探查以及企业级安全的建设等。
如何降低 Flink 开发和运维成本?阿里云实时计算平台建设实践
|
存储 SQL 分布式计算
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践
271 0
|
存储 数据挖掘 Apache
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(2)
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(2)
277 0
|
SQL 存储 人工智能
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(3)
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(3)
264 0
|
消息中间件 存储 SQL
《Apache Flink 案例集(2022版)》——5.数字化转型——联通-联通实时计算平台演进与实践
《Apache Flink 案例集(2022版)》——5.数字化转型——联通-联通实时计算平台演进与实践
184 0
|
SQL 存储 分布式计算
汽车之家基于 Flink 的实时计算平台 3.0 建设实践
汽车之家实时计算平台负责人邸星星在 FFA 2021 的分享
汽车之家基于 Flink 的实时计算平台 3.0 建设实践

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多
    下一篇
    DataWorks