实时计算 Flink版产品使用合集之可以将数据写入 ClickHouse 数据库中吗

简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:我这边有个flink job周末一直在报GC频繁,然后oom ,然后连接异常,被判定失联,怎么解决?


我这边有个flink job 周末一直在报GC频繁,然后oom ,然后连接异常,被判定失联,怎么解决?但是我从监控图上又看不出 jvm 内存水位线有多高


参考回答:

你这个应该是overhead区域内存炸了,可以尝试调大该部分内存大小。因为只有overhead这部分区域内存超用之后,容器会被kill,taskmanager.memory.jvm-overhead.fraction。可能是你使用了状态函数,你看你managedMemory占用还挺高的。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570425


问题二:在Flink当为多条件组合的时候,是在这个类里面写好吗?


在Flink当为多条件组合的时候,是在这个类里面写好吗?


参考回答:

在Flink中,当需要为多条件组合时,可以在Condition类中定义相应的字段和方法。以下是一个示例:

public class Condition {
    private String type; // 条件类型
    private String className; // 类名
    public Condition(String type, String className) {
        this.type = type;
        this.className = className;
    }
    public String getType() {
        return type;
    }
    public void setType(String type) {
        this.type = type;
    }
    public String getClassName() {
        return className;
    }
    public void setClassName(String className) {
        this.className = className;
    }
    // 根据条件类型和类名创建相应的实例
    public static Object createInstance(String type, String className) throws Exception {
        Class<?> clazz = Class.forName(className);
        if (type.equals("Class")) {
            return clazz.newInstance();
        } else {
            throw new Exception("不支持的条件类型");
        }
    }
}

在这个示例中,我们定义了一个Condition类,其中包含了type和className两个字段。我们还提供了一个静态方法createInstance,用于根据条件类型和类名创建相应的实例。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570369


问题三:Flink CDC是否支持数据写入 clickhoues?


Flink CDC是否支持数据写入 clickhoues?


参考回答:

支持,但是有版本限制,你需要找ververica-connector-clickhouse的连接


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567526


问题四:在Flink 你们有没有给KAFKA做一层负载均衡的访问?不直接暴露BROKER给用户直连


在Flink 你们有没有给KAFKA做一层负载均衡的访问?不直接暴露BROKER给用户直连


参考回答:

在Flink中,我们可以使用Kafka Consumer Groups(消费者组)来为Kafka提供一层负载均衡的访问机制。在这种模式下,Flink将自动分发从Kafka获取的数据到各个TaskManager节点上运行的任务,从而达到负载均衡的目的。这样就可以避免直接暴露Broker给用户直连,从而减少系统的安全风险。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570367


问题五:大家flink 日志怎么收集的?


大家flink 日志怎么收集的?


参考回答:

Flink任务的日志收集主要有两种方式。一种是通过log4j或logback打印日志,然后将日志发送到kafka。具体来说,您可以使用KafkaLog4jAppender插件将log4j日志发送到kafka,或者利用log4j(log4j2) KafkaAppender直接将日志打到kafka里。另一种方式是,所有Flink进程都会创建一个文本格式的日志文件,这些日志可以通过Job-/TaskManager对应的WebUI页面访问,也可能会由所使用的Resource Provider(如YARN)提供额外的访问方式来访问日志。同时,您还可以在Flink的配置文件中增加相应的配置信息,将日志写入Kafka。这样既简化了繁琐的配置,又降低了延迟。需要注意的是,无论采用哪种方式,都推荐使用SLF4J日志接口实现,以便于使用任何支持SLF4J的日志框架。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570366

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
4月前
|
SQL 关系型数据库 MySQL
阿里云RDS云数据库全解析:产品功能、收费标准与活动参考
与云服务器ECS一样,关系型数据库RDS也是很多用户上云必买的热门云产品之一,阿里云的云数据库RDS主要包含RDS MySQL、RDS SQL Server、RDS PostgreSQL、RDS MariaDB等几个关系型数据库,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案,帮助您解决数据库运维的烦恼。本文为大家介绍阿里云的云数据库 RDS主要产品及计费方式、收费标准以及活动等相关情况,以供参考。
|
7月前
|
存储 关系型数据库 分布式数据库
喜报|阿里云PolarDB数据库(分布式版)荣获国内首台(套)产品奖项
阿里云PolarDB数据库管理软件(分布式版)荣获「2024年度国内首版次软件」称号,并跻身《2024年度浙江省首台(套)推广应用典型案例》。
|
4月前
|
存储 监控 大数据
探究ClickHouse数据库的Mutation机制
ClickHouse的Mutation机制提供了一种高效的方式来处理大数据集上的修改操作。然而,需要注意的是,由于其异步和资源密集的特性,应当谨慎地进行规划和优化,以确保系统的整体性能。通过合理地使用Mutation操作,可以在保证数据一致性的同时,有效地管理和分析大规模数据集。
234 18
|
5月前
|
人工智能 数据挖掘 数据库
通义灵码产品演示: 数据库设计与数据分析
本演示展示如何使用通义灵码进行数据库设计与数据分析。通过SQLite构建电商订单表,利用AI生成表结构、插入样本数据,并完成多维度数据分析及可视化图表展示,体现AI在数据库操作中的高效能力。
455 7
|
7月前
|
存储 监控 分布式数据库
ClickHouse分布式数据库动态伸缩(弹性扩缩容)的实现
实现ClickHouse数据库的动态伸缩需要持续的维护和精细的操作。从集群配置到数据迁移,再到监控和自动化,每一步都要仔细管理以确保服务的可靠性和性能。这些活动可以显著提高应用的响应性和成本效率,帮助业务根据实际需求灵活调整资源分配。
413 10
|
5月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
425 158
|
5月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
5月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
970 152
|
5月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
796 156
|
5月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
396 156

热门文章

最新文章

相关产品

  • 实时计算 Flink版