实时计算 Flink版产品使用合集之可以将数据写入 ClickHouse 数据库中吗

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:我这边有个flink job周末一直在报GC频繁,然后oom ,然后连接异常,被判定失联,怎么解决?


我这边有个flink job 周末一直在报GC频繁,然后oom ,然后连接异常,被判定失联,怎么解决?但是我从监控图上又看不出 jvm 内存水位线有多高


参考回答:

你这个应该是overhead区域内存炸了,可以尝试调大该部分内存大小。因为只有overhead这部分区域内存超用之后,容器会被kill,taskmanager.memory.jvm-overhead.fraction。可能是你使用了状态函数,你看你managedMemory占用还挺高的。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570425


问题二:在Flink当为多条件组合的时候,是在这个类里面写好吗?


在Flink当为多条件组合的时候,是在这个类里面写好吗?


参考回答:

在Flink中,当需要为多条件组合时,可以在Condition类中定义相应的字段和方法。以下是一个示例:

public class Condition {
    private String type; // 条件类型
    private String className; // 类名
    public Condition(String type, String className) {
        this.type = type;
        this.className = className;
    }
    public String getType() {
        return type;
    }
    public void setType(String type) {
        this.type = type;
    }
    public String getClassName() {
        return className;
    }
    public void setClassName(String className) {
        this.className = className;
    }
    // 根据条件类型和类名创建相应的实例
    public static Object createInstance(String type, String className) throws Exception {
        Class<?> clazz = Class.forName(className);
        if (type.equals("Class")) {
            return clazz.newInstance();
        } else {
            throw new Exception("不支持的条件类型");
        }
    }
}

在这个示例中,我们定义了一个Condition类,其中包含了type和className两个字段。我们还提供了一个静态方法createInstance,用于根据条件类型和类名创建相应的实例。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570369


问题三:Flink CDC是否支持数据写入 clickhoues?


Flink CDC是否支持数据写入 clickhoues?


参考回答:

支持,但是有版本限制,你需要找ververica-connector-clickhouse的连接


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567526


问题四:在Flink 你们有没有给KAFKA做一层负载均衡的访问?不直接暴露BROKER给用户直连


在Flink 你们有没有给KAFKA做一层负载均衡的访问?不直接暴露BROKER给用户直连


参考回答:

在Flink中,我们可以使用Kafka Consumer Groups(消费者组)来为Kafka提供一层负载均衡的访问机制。在这种模式下,Flink将自动分发从Kafka获取的数据到各个TaskManager节点上运行的任务,从而达到负载均衡的目的。这样就可以避免直接暴露Broker给用户直连,从而减少系统的安全风险。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570367


问题五:大家flink 日志怎么收集的?


大家flink 日志怎么收集的?


参考回答:

Flink任务的日志收集主要有两种方式。一种是通过log4j或logback打印日志,然后将日志发送到kafka。具体来说,您可以使用KafkaLog4jAppender插件将log4j日志发送到kafka,或者利用log4j(log4j2) KafkaAppender直接将日志打到kafka里。另一种方式是,所有Flink进程都会创建一个文本格式的日志文件,这些日志可以通过Job-/TaskManager对应的WebUI页面访问,也可能会由所使用的Resource Provider(如YARN)提供额外的访问方式来访问日志。同时,您还可以在Flink的配置文件中增加相应的配置信息,将日志写入Kafka。这样既简化了繁琐的配置,又降低了延迟。需要注意的是,无论采用哪种方式,都推荐使用SLF4J日志接口实现,以便于使用任何支持SLF4J的日志框架。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570366

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
15天前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
15天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
679 10
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
17天前
|
SQL 关系型数据库 数据库
国产数据实战之docker部署MyWebSQL数据库管理工具
【10月更文挑战第23天】国产数据实战之docker部署MyWebSQL数据库管理工具
56 4
国产数据实战之docker部署MyWebSQL数据库管理工具
|
12天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
14天前
|
关系型数据库 分布式数据库 数据库
云栖大会|从数据到决策:AI时代数据库如何实现高效数据管理?
在2024云栖大会「海量数据的高效存储与管理」专场,阿里云瑶池讲师团携手AMD、FunPlus、太美医疗科技、中石化、平安科技以及小赢科技、迅雷集团的资深技术专家深入分享了阿里云在OLTP方向的最新技术进展和行业最佳实践。
|
22天前
|
人工智能 Cloud Native 容灾
云数据库“再进化”,OB Cloud如何打造云时代的数据底座?
云数据库“再进化”,OB Cloud如何打造云时代的数据底座?
zdl
|
3天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
18 0
|
23天前
|
NoSQL 前端开发 MongoDB
前端的全栈之路Meteor篇(三):运行在浏览器端的NoSQL数据库副本-MiniMongo介绍及其前后端数据实时同步示例
MiniMongo 是 Meteor 框架中的客户端数据库组件,模拟了 MongoDB 的核心功能,允许前端开发者使用类似 MongoDB 的 API 进行数据操作。通过 Meteor 的数据同步机制,MiniMongo 与服务器端的 MongoDB 实现实时数据同步,确保数据一致性,支持发布/订阅模型和响应式数据源,适用于实时聊天、项目管理和协作工具等应用场景。
|
8天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
22 4
|
6天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
19 1

相关产品

  • 实时计算 Flink版