如何将照片或者视频中的背景图抠掉,机器学习开源项目使用 | 机器学习

简介: 如何将照片或者视频中的背景图抠掉,机器学习开源项目使用 | 机器学习

前言

本文主要介绍一个神奇有意思的开源项目: BackgroundMattingV2


该项目可以将照片或者视频中人的背景扣掉,变成带alpha通道的图片。怎么样?可以设想一下有什么其他用法,可以给个思路,如果可以拿到抠出背景后的图片,可以贴在任意背景上,不就可以任意替换照片人物的背景了吗?还挺有意思哦。


该项目的训练部分,我会简述。


开源项目介绍

我们进入项目GitHub页面,在README部分,我们可以看到作者给出的一些效果。还是很不错的。


image.png


项目对照片与视频的效果不太一样。


1)照片是通过原始照片与原始照片的背景图,两张图,抠出带透明通道的png。


2)视频是通过原始视频与背景图,抠出纯绿色背景的人物视频。


image.png


项目给出的素材下载的地址很全。我下面按照项目验证效果的顺序,来把项目跑起来。


项目结构

Pycharm把Github地址项目clone下来。


image.png


颜色不一致的是我自己添加的代码,可忽略。


我们看到作者提供了现成的inference,可以直接去使用。


模型下载

模型下载地址项目README给出了:模型地址


image.png


选择pytorch里面pytorch_resnet50.pth,另一个也可以,看心情。


image.png


image.png



测试数据下载

我们下载一些测试数据:测试数据


选择一些图片、视频以及对应的背景图,下载下来做测试使用。


image.png


训练数据下载

这部分数据看你的需要,如果直接使用作者提供的模型可以忽略这部分。地址:dataset地址


数据还是



image.png


依赖下载

项目中的requirements.txt提供了项目所需要的依赖。如下:


kornia==0.4.1
tensorboard==2.3.0
torch==1.7.0
torchvision==0.8.1
tqdm==4.51.0
opencv-python==4.4.0.44
onnxruntime==1.6.0


需要注意一下,本机电脑的NVIDIA显卡驱动是否安装正确。具体可以参考我的另一篇文章,里面有介绍:

Pycharm代码docker容器运行调试 | 机器学习系列_阿良的博客-CSDN博客

介绍常规的本地化运行机器学习代码,安装Anaconda+cuda显卡驱动支持,许多文章都有介绍,不在此多做赘述了。本文主要是为了解决在工作环境中,本机电脑没有显卡,需要将程序运行在带显卡的远程服务器上。本文会介绍如何部署使用显卡的docker容器、如何使用pycharm连接docker容器运行机器学习代码。版本Pycharm: 2020.1.3docker:19.03.12python: 3.6.13demo算法: BackgroundMattingV2部署下面我会按照.

https://huyi-aliang.blog.csdn.net/article/details/120556923


测试图片的抠图效果

先观察一下作者给的inferance_images.py,需要那些参数:


parser = argparse.ArgumentParser(description='Inference images')
parser.add_argument('--model-type', type=str, required=True, choices=['mattingbase', 'mattingrefine'])
parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet101', 'resnet50', 'mobilenetv2'])
parser.add_argument('--model-backbone-scale', type=float, default=0.25)
parser.add_argument('--model-checkpoint', type=str, required=True)
parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding'])
parser.add_argument('--model-refine-sample-pixels', type=int, default=80_000)
parser.add_argument('--model-refine-threshold', type=float, default=0.7)
parser.add_argument('--model-refine-kernel-size', type=int, default=3)
parser.add_argument('--images-src', type=str, required=True)
parser.add_argument('--images-bgr', type=str, required=True)
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--num-workers', type=int, default=0, 
    help='number of worker threads used in DataLoader. Note that Windows need to use single thread (0).')
parser.add_argument('--preprocess-alignment', action='store_true')
parser.add_argument('--output-dir', type=str, required=True)
parser.add_argument('--output-types', type=str, required=True, nargs='+', choices=['com', 'pha', 'fgr', 'err', 'ref'])
parser.add_argument('-y', action='store_true')
args = parser.parse_args()

主要看一下required为True的参数,都属于必填参数。为了比较直观的看到参数的使用,我们不采用直接命令执行的方式。我们通过subprocess调用命令,代码如下:


#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2021/11/13 22:43
# @Author  : 至尊宝
# @Site    : 
# @File    : main1.py
import subprocess
cmd = 'python inference_images.py \
        --model-type mattingrefine \
        --model-backbone resnet50 \
        --model-backbone-scale 0.25 \
        --model-refine-mode sampling \
        --model-refine-sample-pixels 80000 \
        --model-checkpoint "content/pytorch_resnet50.pth" \
        --images-src "content/img/" \
        --images-bgr "content/bgr/" \
        --output-dir "content/output/" \
        --output-type com'
print(cmd)
child = subprocess.Popen(cmd, shell=True)
child.wait()

命令说明


1、我们下载的模型是pytorch_resnet50.pth,所以model-backbone选择resnet50。


2、注意图片抠图的images-src与images-bgr为图片目录,其中根据文件名产生对应关系。


屏幕快照 2022-06-08 下午11.25.20.png




3、output-types的类型可以支持'com', 'pha', 'fgr', 'err', 'ref',我们就取com,最终输出的带alpha通道的图片。


执行看看效果


image.png


image.png

image.png


image.png


效果很不错,头发也比较清楚的抠出来了。


测试视频的抠图效果

观察一下作者给出的inferance_video.py给出的参数。


parser = argparse.ArgumentParser(description='Inference video')
parser.add_argument('--model-type', type=str, required=True, choices=['mattingbase', 'mattingrefine'])
parser.add_argument('--model-backbone', type=str, required=True, choices=['resnet101', 'resnet50', 'mobilenetv2'])
parser.add_argument('--model-backbone-scale', type=float, default=0.25)
parser.add_argument('--model-checkpoint', type=str, required=True)
parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding'])
parser.add_argument('--model-refine-sample-pixels', type=int, default=80_000)
parser.add_argument('--model-refine-threshold', type=float, default=0.7)
parser.add_argument('--model-refine-kernel-size', type=int, default=3)
parser.add_argument('--video-src', type=str, required=True)
parser.add_argument('--video-bgr', type=str, required=True)
parser.add_argument('--video-target-bgr', type=str, default=None, help="Path to video onto which to composite the output (default to flat green)")
parser.add_argument('--video-resize', type=int, default=None, nargs=2)
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--preprocess-alignment', action='store_true')
parser.add_argument('--output-dir', type=str, required=True)
parser.add_argument('--output-types', type=str, required=True, nargs='+', choices=['com', 'pha', 'fgr', 'err', 'ref'])
parser.add_argument('--output-format', type=str, default='video', choices=['video', 'image_sequences'])
args = parser.parse_args()


我们通过subprocess调用命令,代码如下:


#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2021/11/14 0:28
# @Author  : 至尊宝
# @Site    : 
# @File    : main2.py
import subprocess
cmd = 'python inference_video.py \
        --model-type mattingrefine \
        --model-backbone resnet50 \
        --model-backbone-scale 0.25 \
        --model-refine-mode sampling \
        --model-refine-sample-pixels 80000 \
        --model-checkpoint "content/pytorch_resnet50.pth" \
        --video-src "content/video/b8.mp4" \
        --video-bgr "content/video/b8.png" \
        --output-dir "content/output1/" \
        --output-type com'
print(cmd)
child = subprocess.Popen(cmd, shell=True)
child.wait()

参数说明


1、基本和图片处理的参数差不多,只是换了两个参数video-src与video-bgr。


2、准备好视频和背景图。


image.png


验证一下效果



image.png



image.png


效果还不错,头发还是可以看出来的。


总结

这个开源项目还是很优越的,之后我会把这个项目改造改造,变成可以直接用的工具。


说说项目缺点,都是小缺点。


1、图片的处理需要使用目录所谓参数,而不是一张图,如果需要对单一张图处理的话,仍然需要使用文件夹存储图片,有点麻烦。


2、每次都会询问是否需要创建output-dir,看一下代码中的逻辑:


# Create output directory
if os.path.exists(args.output_dir):
    if args.y or input(f'Directory {args.output_dir} already exists. Override? [Y/N]: ').lower() == 'y':
        shutil.rmtree(args.output_dir)
    else:
        exit()

总的来说,该模型的抠图效果还是很不错的,只是需要我们二次创作。


分享:


       白马非马不算境界,白马是鹿才是境界。——《雪中悍刀行》


如果本文对你有用的话,请不要吝啬你的赞,谢谢!


相关文章
|
6月前
|
机器学习/深度学习 数据可视化 计算机视觉
【视频】机器学习交叉验证CV原理及R语言主成分PCA回归分析犯罪率|数据共享
【视频】机器学习交叉验证CV原理及R语言主成分PCA回归分析犯罪率|数据共享
|
6月前
|
机器学习/深度学习 算法 数据可视化
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
|
6月前
|
机器学习/深度学习 Ubuntu Linux
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-1
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
|
4月前
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
5月前
|
机器学习/深度学习 vr&ar 异构计算
【机器学习】Ctrl-Adapter:视频生成领域的革新者
【机器学习】Ctrl-Adapter:视频生成领域的革新者
68 0
|
6月前
|
机器学习/深度学习 数据采集 算法
2024年机器学习入门,2024年最新字节跳动视频面试一般多久会收到结果
2024年机器学习入门,2024年最新字节跳动视频面试一般多久会收到结果
2024年机器学习入门,2024年最新字节跳动视频面试一般多久会收到结果
|
6月前
|
机器学习/深度学习 测试技术 数据处理
【视频】R语言机器学习高维数据应用:Lasso回归和交叉验证预测房屋市场租金价格
【视频】R语言机器学习高维数据应用:Lasso回归和交叉验证预测房屋市场租金价格
|
6月前
|
机器学习/深度学习 TensorFlow 语音技术
【Android +Tensroflow Lite】实现从基于机器学习语音中识别指令讲解及实战(超详细 附源码和演示视频)
【Android +Tensroflow Lite】实现从基于机器学习语音中识别指令讲解及实战(超详细 附源码和演示视频)
59 0
|
达摩院
三分钟视频|看懂达摩院语音降噪模型训练全过程
三分钟视频|看懂达摩院语音降噪模型训练全过程
196 0
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
239 14

热门文章

最新文章