极大降低大模型训练内存需求,Meta等推出高效方法

简介: 【2月更文挑战第27天】极大降低大模型训练内存需求,Meta等推出高效方法

3e50bd78a434505b24e1bc1bb5edce96.jpeg
随着人工智能技术的飞速发展,大型语言模型(LLMs)在自然语言处理领域扮演着越来越重要的角色。它们在多种任务中展现出了卓越的性能,如文本生成、机器翻译、情感分析等。然而,这些模型的成功背后隐藏着一个巨大的挑战——训练过程中的内存消耗。传统的内存优化方法,如低秩适应(LoRA),虽然在一定程度上缓解了这一问题,但仍存在性能损失和训练动态改变等缺陷。最近,Meta等机构推出了一种名为梯度低秩投影(GaLore)的高效训练策略,这一方法在大幅降低内存需求的同时,保持了模型的训练效率和性能。

GaLore的核心思想是利用权重矩阵梯度的低秩结构,通过投影矩阵将梯度矩阵投影到低秩形式,从而显著减少优化器状态的内存占用。这种方法不仅在理论上具有优势,而且在实践中也显示出了卓越的性能。在预训练LLaMA 1B和7B架构以及在GLUE任务上微调RoBERTa时,GaLore都展现出了与全秩权重训练相当的效率和性能。特别是在8位优化器状态下,GaLore进一步将内存使用减少了高达82.5%,总训练内存减少了63.3%,这一成果在消费级GPU上预训练7B模型的可行性上尤为突出。

GaLore的提出,对于大型语言模型的训练具有重要意义。首先,它使得在消费级GPU上进行大型模型训练成为可能,这对于那些资源有限的研究者和开发者来说是一个巨大的福音。其次,GaLore的内存效率为大型模型的训练提供了新的视角,它不仅减少了训练过程中的能源消耗,还有助于降低碳足迹,这对于减少人工智能对环境的影响具有积极意义。

然而,GaLore也存在一些未解决的问题。例如,如何将GaLore应用于其他类型的模型训练,如视觉变换器和扩散模型,以及如何通过量化或特殊参数化进一步提高内存效率,都是值得未来研究的方向。此外,GaLore在低带宽的消费级硬件上进行弹性数据分布式训练的潜力也值得探索。

论文地址:https://arxiv.org/abs/2403.03507

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
这是7月份的一篇论文,Qwen团队提出的群组序列策略优化算法及其在大规模语言模型强化学习训练中的技术突破
702 0
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
|
4月前
|
人工智能 并行计算 持续交付
如何使用龙蜥衍生版KOS,2步实现大模型训练环境部署
大幅降低了用户开发和应用大模型的技术门槛。
|
3月前
|
机器学习/深度学习 人工智能 测试技术
【ICML2025】大模型后训练性能4倍提升!阿里云PAI团队研究成果ChunkFlow中选
近日,阿里云 PAI 团队、通义实验室与中国科学院大学前沿交叉科学学院合作在机器学习顶级会议 ICML 2025 上发表论文 Efficient Long Context Fine-tuning with Chunk Flow。ChunkFlow 作为阿里云在变长和超长序列数据集上高效训练解决方案,针对处理变长和超长序列数据的性能问题,提出了以 Chunk 为中心的训练机制,支撑 Qwen 全系列模型的长序列续训练和微调任务,在阿里云内部的大量的业务上带来2倍以上的端到端性能收益,大大降低了训练消耗的 GPU 卡时。
|
15天前
|
机器学习/深度学习 算法 数据可视化
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
140 1
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
|
3月前
|
机器学习/深度学习 数据采集 人工智能
微调之后还能做什么?大模型后训练全链路技术解析
本文探讨了后训练的重要性、方法以及最新进展。文章将包含理论分析与实际操作指南,适合希望深入了解并应用这些技术的开发者。
539 18
微调之后还能做什么?大模型后训练全链路技术解析
|
2月前
|
传感器 机器学习/深度学习 监控
【图像融合】差异的高斯:一种简单有效的通用图像融合方法[用于融合红外和可见光图像、多焦点图像、多模态医学图像和多曝光图像](Matlab代码实现)
【图像融合】差异的高斯:一种简单有效的通用图像融合方法[用于融合红外和可见光图像、多焦点图像、多模态医学图像和多曝光图像](Matlab代码实现)
|
3月前
|
机器学习/深度学习 人工智能 安全
DeepSeek-R1技术突破:纯RL训练竟能激发大模型"反思"能力?
仅通过强化学习(RL)训练,无需监督微调(SFT),就能让大模型自发产生带有反思的思维链(long CoT)。这一发现颠覆了此前行业对模型训练范式的认知。
177 3
|
3月前
|
数据采集 编解码 人工智能
Gemma 3n正式版开源:谷歌全新端侧多模态大模型,2GB 内存就能跑,重点提升编码和推理能力!
6月底,Google正式开源发布了全新端侧多模态大模型 Gemma 3n!相较此前的预览版,最新的 Gemma 3n 完整版进一步提升性能表现,支持在 2GB 内存的硬件上本地运行,重点提升了编码和推理方面的能力。
433 1
|
4月前
|
机器学习/深度学习 存储 缓存
大模型推理显存和计算量估计方法
最近做吞吐量调试涉及到输入batch_size的设置,为了把算力和显存用起来,同时不触发out of memory,需要提前估计大模型推理过程中的显存占用
539 5

热门文章

最新文章