极大降低大模型训练内存需求,Meta等推出高效方法

简介: 【2月更文挑战第27天】极大降低大模型训练内存需求,Meta等推出高效方法

3e50bd78a434505b24e1bc1bb5edce96.jpeg
随着人工智能技术的飞速发展,大型语言模型(LLMs)在自然语言处理领域扮演着越来越重要的角色。它们在多种任务中展现出了卓越的性能,如文本生成、机器翻译、情感分析等。然而,这些模型的成功背后隐藏着一个巨大的挑战——训练过程中的内存消耗。传统的内存优化方法,如低秩适应(LoRA),虽然在一定程度上缓解了这一问题,但仍存在性能损失和训练动态改变等缺陷。最近,Meta等机构推出了一种名为梯度低秩投影(GaLore)的高效训练策略,这一方法在大幅降低内存需求的同时,保持了模型的训练效率和性能。

GaLore的核心思想是利用权重矩阵梯度的低秩结构,通过投影矩阵将梯度矩阵投影到低秩形式,从而显著减少优化器状态的内存占用。这种方法不仅在理论上具有优势,而且在实践中也显示出了卓越的性能。在预训练LLaMA 1B和7B架构以及在GLUE任务上微调RoBERTa时,GaLore都展现出了与全秩权重训练相当的效率和性能。特别是在8位优化器状态下,GaLore进一步将内存使用减少了高达82.5%,总训练内存减少了63.3%,这一成果在消费级GPU上预训练7B模型的可行性上尤为突出。

GaLore的提出,对于大型语言模型的训练具有重要意义。首先,它使得在消费级GPU上进行大型模型训练成为可能,这对于那些资源有限的研究者和开发者来说是一个巨大的福音。其次,GaLore的内存效率为大型模型的训练提供了新的视角,它不仅减少了训练过程中的能源消耗,还有助于降低碳足迹,这对于减少人工智能对环境的影响具有积极意义。

然而,GaLore也存在一些未解决的问题。例如,如何将GaLore应用于其他类型的模型训练,如视觉变换器和扩散模型,以及如何通过量化或特殊参数化进一步提高内存效率,都是值得未来研究的方向。此外,GaLore在低带宽的消费级硬件上进行弹性数据分布式训练的潜力也值得探索。

论文地址:https://arxiv.org/abs/2403.03507

目录
相关文章
|
23天前
|
人工智能 并行计算 持续交付
如何使用龙蜥衍生版KOS,2步实现大模型训练环境部署
大幅降低了用户开发和应用大模型的技术门槛。
|
3月前
|
机器学习/深度学习 存储 算法
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
141 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
ICLR 2025 | EDiT:一种基于 Local SGD 策略的大模型高效分布式训练方法
蚂蚁 AI Infra 团队在深度学习最核心之一的训练框架方向上持续投入与创新,实现了提升资源利用率、加速训练、提升训练稳定性等目标。我们提出的 EDiT 方法,即为其中一项工作。
|
9天前
|
机器学习/深度学习 人工智能 安全
DeepSeek-R1技术突破:纯RL训练竟能激发大模型"反思"能力?
仅通过强化学习(RL)训练,无需监督微调(SFT),就能让大模型自发产生带有反思的思维链(long CoT)。这一发现颠覆了此前行业对模型训练范式的认知。
74 3
|
8天前
|
数据采集 编解码 人工智能
Gemma 3n正式版开源:谷歌全新端侧多模态大模型,2GB 内存就能跑,重点提升编码和推理能力!
6月底,Google正式开源发布了全新端侧多模态大模型 Gemma 3n!相较此前的预览版,最新的 Gemma 3n 完整版进一步提升性能表现,支持在 2GB 内存的硬件上本地运行,重点提升了编码和推理方面的能力。
83 1
|
26天前
|
机器学习/深度学习 存储 缓存
大模型推理显存和计算量估计方法
最近做吞吐量调试涉及到输入batch_size的设置,为了把算力和显存用起来,同时不触发out of memory,需要提前估计大模型推理过程中的显存占用
83 5
|
4天前
|
机器学习/深度学习 人工智能 资源调度
AI大模型训练管理工具:千亿参数时代的指挥中枢
本内容揭示了大模型训练中三大核心挑战:实验复现难、资源利用率低、合规风险高,并提出“三维控制塔”解决方案,涵盖实验管理、资源调度与合规追踪。推荐Immuta + 板栗看板等工具组合助力不同规模团队实现高效、合规、低成本的AI训练。
|
2月前
|
搜索推荐
大模型训练常见通信源语解释
本文总结了在大模型分布式训练中常用的通信原语,包括一对多操作(Broadcast、Scatter)、多对一操作(Gather、Reduce)以及多对多操作(AllGather、AllReduce、ReduceScatter、All-To-All)。这些操作在模型并行和数据并行场景中起到关键作用,如参数初始化、数据切分与汇聚、规约运算等。通过详细介绍每种通信方式的功能与应用场景,帮助理解分布式训练中的数据交互机制。
|
3月前
|
算法 物联网 Swift
Qwen3 X ModelScope工具链: 飞速训练 + 全面评测
Qwen于近日发布了Qwen3系列模型,包含了各个不同规格的Dense模型和MoE模型。开源版本中,Dense模型基本沿用了之前的模型结构,差别之处在于对于Q和K两个tensor增加了RMSNorm;MoE模型去掉了公共Expert,其他结构基本与前一致。在模型大小上,涵盖了从0.6B到32B(Dense)和235B(MoE)不同的尺寸。
332 15
|
1月前
|
存储 Windows
内存卡坏了还能修吗?4种常见修复方法
内存卡出现“无法保存”或“存储异常”等问题时,不一定是硬件损坏,可能是系统错误或文件系统异常导致。本文介绍几种亲测有效的修复方法:1) 更换读卡设备排除接触问题;2) 格式化修复文件系统(需先备份数据);3) 使用DiskGenius检测坏道;4) 借助厂商工具深度修复。同时提供日常保养建议,如避免高温环境、养成数据备份习惯,延长内存卡使用寿命。通过这些方法,多数问题可轻松解决,无需更换硬件。

热门文章

最新文章