计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2

简介: 计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)

计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-1

https://developer.aliyun.com/article/1446368


第3章:图像&视频的加载与展示

  • 相关知识: 学习如何使用OpenCV加载、显示图像和视频。
  • 学习概要: 掌握图像和视频处理的基本操作。
  • 重要性: 这是计算机视觉应用的入门,为后续操作奠定基础。
import cv2

# 读取图像
img = cv2.imread('image.jpg')

# 显示图像
cv2.imshow('Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

第4章:OpenCV必知必会基础

  • 相关知识: 学习OpenCV库中的基础概念、数据类型、函数等。
  • 学习概要: 理解OpenCV的基本结构和用法,为进一步的图像处理打下基础。
  • 重要性: OpenCV基础知识是掌握计算机视觉的关键。
import cv2

# 读取图像
img = cv2.imread('image.jpg')

# 转换为灰度图
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 显示原图和灰度图
cv2.imshow('Original Image', img)
cv2.imshow('Gray Image', gray_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

第5章:OpenCV实现图形的绘制

  • 相关知识: 学习如何使用OpenCV在图像上绘制线条、图形等。
  • 学习概要: 掌握绘制图形的技巧,为图像标注和分析提供基础。
  • 重要性: 在图像处理中,绘制图形是一种常见的可视化手段。
import cv2
import numpy as np

# 创建一张空白图像
img = np.zeros((300, 300, 3), dtype=np.uint8)

# 画线
cv2.line(img, (0, 0), (300, 300), (0, 255, 0), 2)

# 画矩形
cv2.rectangle(img, (50, 50), (250, 250), (0, 0, 255), 2)

# 显示图像
cv2.imshow('Drawing Example', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

第6章:OpenCV的算术与位运算

  • 相关知识: 学习OpenCV中的算术和位运算,如加法、减法、逻辑运算等。
  • 学习概要: 理解图像上的基本数学运算,为图像处理和分析提供工具。
  • 重要性: 图像处理通常涉及到像素级的运算,这些运算对于许多任务至关重要。

第7章:图像基本变换

  • 相关知识: 学习OpenCV中的图像平移、旋转、缩放等基本变换。
  • 学习概要: 掌握图像的基本几何变换,为图像配准和增强提供基础。
  • 重要性: 图像变换是许多计算机视觉任务的前提。
  • 图像基本变换是在图像处理中常用的操作,用于调整图像的几何结构和外观。以下是一些常见的图像基本变换:


  1. 平移(Translation):
  • 平移是将图像沿着水平和垂直方向移动的操作。
  • 平移变换可以通过矩阵乘法来表示。

2.旋转(Rotation):

  • 旋转是围绕图像的中心或指定点按一定角度进行旋转。
  • 旋转变换可以通过旋转矩阵来表示。

3.缩放(Scaling):

  • 缩放是调整图像的尺寸,可以按比例缩小或放大。
  • 缩放变换可以通过缩放矩阵来表示。

4.翻转(Flip):

  • 翻转是将图像水平或垂直翻转。
  • 水平翻转可以通过交换图像的列,垂直翻转可以通过交换图像的行来实现。

5.仿射变换(Affine Transformation):

  • 仿射变换是包括平移、旋转、缩放和剪切在内的线性变换。
  • 仿射变换可以通过矩阵变换来实现。


6.透视变换(Perspective Transformation):

  • 透视变换是一种非线性变换,用于处理图像在透视投影下的形变。
  • 透视变换可以通过透视变换矩阵来表示。

这些基本变换在计算机视觉和图像处理中广泛应用,用于纠正图像畸变、调整图像角度、改变图像尺寸等。在实际应用中,可以使用各种工具和库(如OpenCV)来实现这些变换,简化了复杂的数学运算。

第8章:OpenCV中的滤波器

  • 相关知识: 学习图像平滑、锐化和边缘检测等滤波器的使用。
  • 学习概要: 理解不同滤波器的原理和应用,为图像处理提供更高级的技能。
  • 重要性: 滤波是图像处理中的常见操作,可以用于去噪、增强等。

第9章:OpenCV中的形态学

  • 相关知识: 学习形态学操作,如膨胀、腐蚀、开运算和闭运算。
  • 学习概要: 掌握形态学操作的基本概念,为图像分析和物体检测提供工具。
  • 重要性: 形态学操作对于处理二值图像和物体结构的改变非常重要。

第10章:目标识别

  • 相关知识: 学习如何使用OpenCV进行目标检测和识别。
  • 学习概要: 理解目标识别的基本流程和算法,为实际应用提供基础。
  • 重要性: 目标识别是计算机视觉中的关键任务,应用广泛。
import cv2

# 加载分类器
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# 读取图像
img = cv2.imread('faces.jpg')

# 转换为灰度图
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 进行人脸检测
faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.3, minNeighbors=5)

# 在图像上标记人脸
for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)

# 显示图像
cv2.imshow('Face Detection', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

第11章:特征点检测与匹配

  • 相关知识: 学习特征点检测和匹配算法,如SIFT、SURF、ORB等。
  • 学习概要: 掌握特征点在图像配准和拼接中的应用。
  • 重要性: 特征点是图像处理中常用的一种信息表示方法。

第12章:图像的分割与修复

  • 相关知识: 学习图像分割和修复的基本概念和方法。
  • 学习概要: 了解图像分割和修复在医学图像、无损检测等领域的应用。
  • 重要性: 图像分割和修复是许多图像分析任务的先决条件。


第13章:机器学习

  • 相关知识: 介绍机器学习在计算机视觉中的基本概念,如监督学习、无监督学习等。

学习概要: 理解机器学习在计算机视觉任务中的应用,包括图像分类、目标检测等。

重要性: 机器学习为计算机视觉提供了强大的工具,可以用于从数据中学习复杂的模式。


第14章:课程总结

相关知识: 回顾整个课程所涵盖的知识点和技能。

学习概要: 总结学到的内容,强调重要概念,巩固学习成果。

重要性: 提供一个框架,帮助学生将学到的知识整合,并为进一步学习或实践提供方向

包括了下图内容


资料获取

博文发布两天内点赞收藏评论即可获得!

相关文章
|
1月前
|
机器学习/深度学习 自然语言处理 监控
深度学习之视频摘要生成
基于深度学习的视频摘要生成是一种通过自动化方式从长视频中提取关键片段,生成简洁且有代表性的视频摘要的技术。其目的是在保留视频主要内容的基础上,大幅缩短视频的播放时长,方便用户快速理解视频的核心信息。
73 7
|
1月前
|
机器学习/深度学习 数据处理 数据库
基于Django的深度学习视频分类Web系统
基于Django的深度学习视频分类Web系统
53 4
基于Django的深度学习视频分类Web系统
|
1月前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
22 2
|
1月前
|
机器学习/深度学习 存储 算法
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
29 1
|
1月前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
56 1
|
1月前
|
机器学习/深度学习 运维 监控
深度学习之视频内容理解
基于深度学习的视频内容理解(Video Content Understanding, VCU)是一项关键技术,旨在通过神经网络模型自动分析、解读和提取视频中的语义信息。
71 10
|
1月前
|
机器学习/深度学习 监控 人机交互
深度学习之视频中的姿态跟踪
基于深度学习的视频姿态跟踪是一项用于从视频序列中持续检测和跟踪人体姿态的技术。它能够识别人体的2D或3D关键点,并在时间维度上进行跟踪,主要应用于人机交互、体育分析、动作识别和虚拟现实等领域。
48 3
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】python之人工智能应用篇——视频生成技术
视频生成技术是一种基于深度学习和机器学习的先进技术,它使得计算机能够根据给定的文本、图像、视频等单模态或多模态数据,自动生成符合描述的、高保真的视频内容。这种技术主要依赖于深度学习模型,如生成对抗网络(GAN)、自回归模型(Auto-regressive Model)、扩散模型(Diffusion Model)等。其中,GAN由两个神经网络组成:一个生成器用于生成逼真的图像或视频,另一个判别器用于判断生成的图像或视频是否真实。通过不断的对抗学习,生成器和判别器共同优化,以产生更高质量的视频。
94 2
|
3月前
|
机器学习/深度学习 监控 算法
基于深度学习网络的人员行为视频检测系统matlab仿真,带GUI界面
本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。
70 4
|
4月前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。