【视频】R语言机器学习高维数据应用:Lasso回归和交叉验证预测房屋市场租金价格

简介: 【视频】R语言机器学习高维数据应用:Lasso回归和交叉验证预测房屋市场租金价格

全文链接:http://tecdat.cn/?p=32646

分析师:Junjun Li


在这篇文章中,我们将着重探讨高维数据下的机器学习应用,以房屋市场租金价格预测为例


在实际生活中,房屋租金作为一个重要的经济指标,被广泛应用于城市规划、财务投资等方面的决策中。然而,如何准确地预测房屋租金价格却一直是一个具有挑战性的问题。

本文将介绍如何使用Lasso回归和交叉验证方法来解决高维数据下的房屋市场租金价格预测问题,并详细阐述R语言在此过程中的应用技巧和实现方法。


背景


Goal: 利用主体物业和租户的各种特征来预测房屋市场租金价格

Data: 在Inter-University Consortium for Politicaland Social Research(ICPSR)数据库中找到的2007年美国住房调查(全国微观数据)有65,000个观测值和超过500个变量

Limitation: 某些特征的不可观测

有部分特征在超过80%的观测值中没有数据的,导致没有办法配合预测模型进行变量的筛选

Model used:

Regularization: 10.fold Lasso & AICc Lasso

适合于大量数据处理(高维度多变量)

image.png

数据清理


使用R语言处理无法观测到的变量︰

  1. 观测codebook去除无关的变量
  2. 选择去除50%以上失踪的变量(可以反复对比去除了不同变量后的模型)
  3. 对于剩下的变量去除含有NA的观测值
  4. visualize部分重要变量是否合理

image.png

观测数据


大多数租金集中在一千美元左右,其平均租金(由红线标示)为1025美元(直方图呈现出略微右偏的近似正态分布)。

观测一些关键特征的信息,这些特征有助于预测公平市场租金,包括卧室数量、楼层数量、地块面积和主体单位的平方英尺面积。

image.png

点击标题查阅往期内容


贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据


01

02

03

04


模型分析


Regularization - Lasso Model

image.png

使用K-Fold cross validation确定最佳的lamda值:

数据被分成K个相等的部分,除了第k个折叠之外的所有数据都用于训练模型,第k个折叠用于测试模型,记录离样本外的偏差。

重复此过程,以至每个折叠都有机会成为测试集。导致离样本外偏差最小的lamda是最优lamda值,在案例中我采用K-10:

最终计算最小deviance中的样本内R^2与通过10 Fold cross validation计算出的样本外R^2。

image.png

左侧是套索正则化路径的绘图。我们可以看到随着lamda的增加,系数逐渐趋近于零。

右侧的图表显示了10Fold crossvalidation的离样本外偏差误差估计。最优lamda由最左边的垂直虚线表示。图表上的最低点实际上位于图表的最左侧,lamda的值最小。

与典型的图表不同,这个图表不是呈“u形。

在这种情况下,这意味着选择了最复杂的模型作为最优解。

image.png

模型分析


右图的值表示非零系数及其值,取重要变量进行合理性分析: 卧室数量:每增加—个卧室,月租金价格天约增加143.51美元,其他变量和特征保持不变。这个值是合理的,因为2个卧室的单位的租金价格很可能大于1个卧室的单位的租金价格。楼层数的系数是负数:对于每增加个楼层的单位或物业,月租金价格将减少约10.55美元,其他变量和系数保持不变。这个负系数是合理的,因为楼层数较多的物业更有可能是紧凑型的。

image.png

模型分析


与10-Fold cross validation相比,我还使用了一个计算上较为简便的替代方法是Akaike Information Criterion(AICc)。

在高维数据中,AICc倾向于产生过于复杂的模型,导致过拟合。然而,AICc得到的非零系数及其值与之前相同。

在右图中,我们展示了在我们的情况下,由AIC 、 AICc和10-Fold cross validation选择的最优lamda是相同的,即黑色、橙色和蓝色虚线重叠的部分.

image.png

总结


在执行Lasso Regularization后,我们看到模型从数据集中选择了186个变量中的76个变量。但有一些重要变量地没有包含在模型中,例如主体物业的建造年份和浴室数量,因为其中缺失了大量的观测值。

因为数据缺失较多所以模型只能用作客观预测,不能很好的反应各个变量之间的相关性, 在数据清理方面,选择去除含50%及以上数据缺失的变量也是一个需要权衡的方向,因为这个门槛选择太低又可能导致数据少无法正确反应变量之间的关系作用,而门槛太高就会出现没办法选择到一些比较重要的变量。

此模型不具备自适应性,所以需要新数据的更新支持才能更好的保证其预测的准确性。

image.png

相关文章
|
6天前
|
机器学习/深度学习 数据采集 自然语言处理
理解并应用机器学习算法:神经网络深度解析
【5月更文挑战第15天】本文深入解析了神经网络的基本原理和关键组成,包括神经元、层、权重、偏置及损失函数。介绍了神经网络在图像识别、NLP等领域的应用,并涵盖了从数据预处理、选择网络结构到训练与评估的实践流程。理解并掌握这些知识,有助于更好地运用神经网络解决实际问题。随着技术发展,神经网络未来潜力无限。
|
6天前
【R语言实战】——fGARCH包在金融时序上的模拟应用
【R语言实战】——fGARCH包在金融时序上的模拟应用
|
6天前
|
机器学习/深度学习 数据采集 搜索推荐
探索机器学习在推荐系统中的应用
【5月更文挑战第15天】本文探讨了机器学习在推荐系统中的应用,强调其在数据预处理、个性化建模、内容过滤及解决冷启动问题中的作用。协同过滤、矩阵分解、深度学习和强化学习是常用算法。尽管面临数据处理、准确性与多样性平衡、兴趣变化等挑战,但未来机器学习有望通过结合先进算法提升推荐系统性能,同时需关注隐私和伦理问题。
|
6天前
|
机器学习/深度学习 数据采集 算法
深入理解并应用机器学习算法:支持向量机(SVM)
【5月更文挑战第13天】支持向量机(SVM)是监督学习中的强分类算法,用于文本分类、图像识别等领域。它寻找超平面最大化间隔,支持向量是离超平面最近的样本点。SVM通过核函数处理非线性数据,软间隔和正则化避免过拟合。应用步骤包括数据预处理、选择核函数、训练模型、评估性能及应用预测。优点是高效、鲁棒和泛化能力强,但对参数敏感、不适合大规模数据集且对缺失数据敏感。理解SVM原理有助于优化实际问题的解决方案。
|
6天前
|
机器学习/深度学习 算法
理解并应用机器学习算法:决策树
【5月更文挑战第12天】决策树是直观的分类与回归机器学习算法,通过树状结构模拟决策过程。每个内部节点代表特征属性,分支代表属性取值,叶子节点代表类别。构建过程包括特征选择(如信息增益、基尼指数等)、决策树生成和剪枝(预剪枝和后剪枝)以防止过拟合。广泛应用在信贷风险评估、医疗诊断等领域。理解并掌握决策树有助于解决实际问题。
|
6天前
|
机器学习/深度学习 人工智能 算法
【机器学习】K-means聚类有哪些应用?
【5月更文挑战第11天】【机器学习】K-means聚类有哪些应用?
|
6天前
|
机器学习/深度学习 人工智能 数据可视化
【视频】R语言支持向量回归SVR预测水位实例讲解|附代码数据
【视频】R语言支持向量回归SVR预测水位实例讲解|附代码数据
|
6天前
|
机器学习/深度学习 数据采集 算法
数据分享|R语言机器学习预测案例合集:众筹平台、机票折扣、糖尿病患者、员工满意度
数据分享|R语言机器学习预测案例合集:众筹平台、机票折扣、糖尿病患者、员工满意度
|
6天前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
6天前
|
数据可视化 数据挖掘
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码1
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码

热门文章

最新文章