计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-1

简介: 计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)

image.png

第1章:视觉项目资料介绍与学习指南

  • 相关知识: 介绍计算机视觉、OpenCV库,以及课程的整体结构。
  • 学习概要: 了解课程的目标和学习路径,为后续章节做好准备。
  • 重要性: 提供学生对整个课程的整体认识,为学习提供框架和背景。

图为计算机视觉opencv的全资料:

包括了

  • 计算机视觉/opencv视频
  • 视频对应的PPT。
  • 各模块代码
  • 自学pdf资料
  • 包括了图像处理 目标检测 计算机视觉任务

59965f99c4c6de135a966af044c384a3_9c78253acbf141bc862481236434f13a.png


第2章:OpenCV开发环境搭建

  • 相关知识: 学习如何安装和配置OpenCV开发环境。
  • 学习概要: 理解搭建OpenCV环境的步骤和常见问题的解决方法。
  • 重要性: 为后续章节的实际编程提供必要的基础。
    OpenCV的开发环境搭建可以在不同的操作系统上进行,以下是一些常见操作系统上的基本步骤。请注意,这里提供的是一种通用的方法,具体步骤可能会根据不同的系统和需求有所变化。


Windows 环境下搭建 OpenCV:

  1. 安装 Python:
  1. 安装 CMake:
  1. 安装 Visual Studio:
  1. 安装 NumPy:
  • 打开命令行(CMD)并运行以下命令:pip install numpy
  1. 下载 OpenCV:
  1. 编译 OpenCV:
  • 使用 CMake 配置 OpenCV。
  • 打开 CMake GUI,设置源代码路径和生成路径,点击 “Configure”。
  • 根据需要调整配置,然后点击 “Generate”。
  • 打开 Visual Studio,打开生成的解决方案文件,编译和生成 OpenCV。
  1. 安装 OpenCV:
  • 在生成的目录中找到生成的 OpenCV 安装文件(.exe 或 .msi),运行并按照提示安装 OpenCV。


macOS 环境下搭建 OpenCV:

1.安装 Homebrew:

  • 打开终端,并运行以下命令:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

2.安装 Python:

  • 运行以下命令:
brew install python

3.安装 NumPy:

  • 运行以下命令:
pip install numpy

4.安装 OpenCV:

  • 运行以下命令:
brew install opencv


Linux 环境下搭建 OpenCV:

  1. 安装 Python:
  • 使用系统包管理器(例如,apt、yum)安装 Python。
  • 例如,在 Ubuntu 上运行:
sudo apt-get update
sudo apt-get install python3

2.安装 NumPy:

  • 运行以下命令:
pip install numpy

3.安装 OpenCV:

  • 使用系统包管理器安装 OpenCV。
  • 在 Ubuntu 上运行:
sudo apt-get install libopencv-dev python3-opencv

以上是基本的步骤,具体的环境搭建可能因操作系统版本、包管理器版本等而有所不同。建议查看相关文档以获取更详细和最新的信息。在搭建环境时,确保按照官方文档的说明进行操作,以确保正确的配置和依赖。


计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2

https://developer.aliyun.com/article/1446372?spm=a2c6h.13148508.setting.19.68a34f0egwu157

相关文章
|
机器学习/深度学习 监控 算法
基于计算机视觉(opencv)的运动计数(运动辅助)系统-源码+注释+报告
基于计算机视觉(opencv)的运动计数(运动辅助)系统-源码+注释+报告
413 3
|
机器学习/深度学习 人工智能 算法
Python在计算机视觉(CV)中扮演重要角色,得益于其丰富的库如OpenCV、Pillow和Scikit-image。
【7月更文挑战第5天】Python在计算机视觉(CV)中扮演重要角色,得益于其丰富的库如OpenCV、Pillow和Scikit-image。CV涉及图像处理、模式识别和机器学习,用于图像理解和生成。Python的跨平台特性和活跃社区使其成为CV的理想工具。基本流程包括图像获取、预处理、特征提取、分类识别及图像生成。例如,面部识别通过预处理图像,使用如`cv2.CascadeClassifier`进行检测;物体检测类似,但需适应不同目标;图像生成则利用GAN创造新图像。
261 4
|
编解码 机器人 测试技术
2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
634 8
|
机器学习/深度学习 并行计算 算法
Ebsynth:利用图像处理和计算机视觉的视频风格转换技术工具
EbSynth 是一款基于视频风格转换技术的工具,专注于将静态艺术风格应用到视频中的每一帧,使视频具有独特的艺术效果。它利用图像处理和计算机视觉技术,将用户提供的参考图像或绘画风格转换为视频效果。
554 2
|
机器学习/深度学习 人工智能 自然语言处理
OpenCV与AI深度学习之常用AI名词解释学习
AGI:Artificial General Intelligence (通用人工智能):是指具备与人类同等或超越人类的智能,能够表现出正常人类所具有的所有智能行为。又被称为强人工智能。
1464 2
|
机器学习/深度学习 算法 Java
计算机视觉——opencv快速入门(一) opencv的介绍与安装
OpenCV是开源计算机视觉库,支持C++, Python, Java等,用于图像处理、视频分析等。建议使用较早版本如3.4.3,因高版本部分算法需付费。通过Anaconda创建Python虚拟环境来安装,选择合适的Python和OpenCV版本。激活环境后,用`pip`安装`opencv-python`。基本环境配置完成后,通过显示图像的Python代码测试安装是否成功。
计算机视觉——opencv快速入门(一) opencv的介绍与安装
|
机器学习/深度学习 人工智能 TensorFlow
如何将OpenCV与AI深度学习结合使用
如何将OpenCV与AI深度学习结合使用
676 1
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
机器学习/深度学习 人工智能 计算机视觉
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
|
算法 计算机视觉 Python
openCV 3计算机视觉 Python语言实现 笔记 第4章 深度估计与分割
openCV 3计算机视觉 Python语言实现 笔记 第4章 深度估计与分割
196 0