计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-1

简介: 计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)

image.png

第1章:视觉项目资料介绍与学习指南

  • 相关知识: 介绍计算机视觉、OpenCV库,以及课程的整体结构。
  • 学习概要: 了解课程的目标和学习路径,为后续章节做好准备。
  • 重要性: 提供学生对整个课程的整体认识,为学习提供框架和背景。

图为计算机视觉opencv的全资料:

包括了

  • 计算机视觉/opencv视频
  • 视频对应的PPT。
  • 各模块代码
  • 自学pdf资料
  • 包括了图像处理 目标检测 计算机视觉任务

59965f99c4c6de135a966af044c384a3_9c78253acbf141bc862481236434f13a.png


第2章:OpenCV开发环境搭建

  • 相关知识: 学习如何安装和配置OpenCV开发环境。
  • 学习概要: 理解搭建OpenCV环境的步骤和常见问题的解决方法。
  • 重要性: 为后续章节的实际编程提供必要的基础。
    OpenCV的开发环境搭建可以在不同的操作系统上进行,以下是一些常见操作系统上的基本步骤。请注意,这里提供的是一种通用的方法,具体步骤可能会根据不同的系统和需求有所变化。


Windows 环境下搭建 OpenCV:

  1. 安装 Python:
  1. 安装 CMake:
  1. 安装 Visual Studio:
  1. 安装 NumPy:
  • 打开命令行(CMD)并运行以下命令:pip install numpy
  1. 下载 OpenCV:
  1. 编译 OpenCV:
  • 使用 CMake 配置 OpenCV。
  • 打开 CMake GUI,设置源代码路径和生成路径,点击 “Configure”。
  • 根据需要调整配置,然后点击 “Generate”。
  • 打开 Visual Studio,打开生成的解决方案文件,编译和生成 OpenCV。
  1. 安装 OpenCV:
  • 在生成的目录中找到生成的 OpenCV 安装文件(.exe 或 .msi),运行并按照提示安装 OpenCV。


macOS 环境下搭建 OpenCV:

1.安装 Homebrew:

  • 打开终端,并运行以下命令:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

2.安装 Python:

  • 运行以下命令:
brew install python

3.安装 NumPy:

  • 运行以下命令:
pip install numpy

4.安装 OpenCV:

  • 运行以下命令:
brew install opencv


Linux 环境下搭建 OpenCV:

  1. 安装 Python:
  • 使用系统包管理器(例如,apt、yum)安装 Python。
  • 例如,在 Ubuntu 上运行:
sudo apt-get update
sudo apt-get install python3

2.安装 NumPy:

  • 运行以下命令:
pip install numpy

3.安装 OpenCV:

  • 使用系统包管理器安装 OpenCV。
  • 在 Ubuntu 上运行:
sudo apt-get install libopencv-dev python3-opencv

以上是基本的步骤,具体的环境搭建可能因操作系统版本、包管理器版本等而有所不同。建议查看相关文档以获取更详细和最新的信息。在搭建环境时,确保按照官方文档的说明进行操作,以确保正确的配置和依赖。


计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2

https://developer.aliyun.com/article/1446372?spm=a2c6h.13148508.setting.19.68a34f0egwu157

相关文章
|
12天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
44 3
|
2天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
11 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
5天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
11 2
|
8天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
29天前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
21 2
|
29天前
|
机器学习/深度学习 存储 算法
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
28 1
|
30天前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
63 2
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
52 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
27天前
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习之间的区别
机器学习和深度学习在实际应用中各有优势和局限性。机器学习适用于一些数据量较小、问题相对简单、对模型解释性要求较高的场景;而深度学习则在处理大规模、复杂的数据和任务时表现出色,但需要更多的计算资源和数据,并且模型的解释性较差。在实际应用中,需要根据具体的问题和需求,结合两者的优势,选择合适的方法来解决问题。
51 0
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
浅谈机器学习与深度学习的区别
浅谈机器学习与深度学习的区别
45 0

热门文章

最新文章