计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-1

简介: 计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)

image.png

第1章:视觉项目资料介绍与学习指南

  • 相关知识: 介绍计算机视觉、OpenCV库,以及课程的整体结构。
  • 学习概要: 了解课程的目标和学习路径,为后续章节做好准备。
  • 重要性: 提供学生对整个课程的整体认识,为学习提供框架和背景。

图为计算机视觉opencv的全资料:

包括了

  • 计算机视觉/opencv视频
  • 视频对应的PPT。
  • 各模块代码
  • 自学pdf资料
  • 包括了图像处理 目标检测 计算机视觉任务

59965f99c4c6de135a966af044c384a3_9c78253acbf141bc862481236434f13a.png


第2章:OpenCV开发环境搭建

  • 相关知识: 学习如何安装和配置OpenCV开发环境。
  • 学习概要: 理解搭建OpenCV环境的步骤和常见问题的解决方法。
  • 重要性: 为后续章节的实际编程提供必要的基础。
    OpenCV的开发环境搭建可以在不同的操作系统上进行,以下是一些常见操作系统上的基本步骤。请注意,这里提供的是一种通用的方法,具体步骤可能会根据不同的系统和需求有所变化。


Windows 环境下搭建 OpenCV:

  1. 安装 Python:
  1. 安装 CMake:
  1. 安装 Visual Studio:
  1. 安装 NumPy:
  • 打开命令行(CMD)并运行以下命令:pip install numpy
  1. 下载 OpenCV:
  1. 编译 OpenCV:
  • 使用 CMake 配置 OpenCV。
  • 打开 CMake GUI,设置源代码路径和生成路径,点击 “Configure”。
  • 根据需要调整配置,然后点击 “Generate”。
  • 打开 Visual Studio,打开生成的解决方案文件,编译和生成 OpenCV。
  1. 安装 OpenCV:
  • 在生成的目录中找到生成的 OpenCV 安装文件(.exe 或 .msi),运行并按照提示安装 OpenCV。


macOS 环境下搭建 OpenCV:

1.安装 Homebrew:

  • 打开终端,并运行以下命令:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

2.安装 Python:

  • 运行以下命令:
brew install python

3.安装 NumPy:

  • 运行以下命令:
pip install numpy

4.安装 OpenCV:

  • 运行以下命令:
brew install opencv


Linux 环境下搭建 OpenCV:

  1. 安装 Python:
  • 使用系统包管理器(例如,apt、yum)安装 Python。
  • 例如,在 Ubuntu 上运行:
sudo apt-get update
sudo apt-get install python3

2.安装 NumPy:

  • 运行以下命令:
pip install numpy

3.安装 OpenCV:

  • 使用系统包管理器安装 OpenCV。
  • 在 Ubuntu 上运行:
sudo apt-get install libopencv-dev python3-opencv

以上是基本的步骤,具体的环境搭建可能因操作系统版本、包管理器版本等而有所不同。建议查看相关文档以获取更详细和最新的信息。在搭建环境时,确保按照官方文档的说明进行操作,以确保正确的配置和依赖。


计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2

https://developer.aliyun.com/article/1446372?spm=a2c6h.13148508.setting.19.68a34f0egwu157

相关文章
|
1月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
74 3
|
1月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
129 9
|
14天前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
|
3天前
|
机器学习/深度学习 人工智能 算法
机器学习与深度学习:差异解析
机器学习与深度学习作为两大核心技术,各自拥有独特的魅力和应用价值。尽管它们紧密相连,但两者之间存在着显著的区别。本文将从定义、技术、数据需求、应用领域、模型复杂度以及计算资源等多个维度,对机器学习与深度学习进行深入对比,帮助您更好地理解它们之间的差异。
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
81 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
25天前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
72 0
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
38 0
|
2月前
|
机器学习/深度学习 存储 自然语言处理
深度学习之少样本学习
少样本学习(Few-Shot Learning, FSL)是深度学习中的一个重要研究领域,其目标是在只有少量标注样本的情况下,训练出能够很好地泛化到新类别或新任务的模型。
46 2
|
2月前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
34 2
|
1月前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
142 0