力扣LeetCode刷题心得之Python 买钢笔和铅笔的方案数,找到最接近 0 的数字

简介: 买钢笔和铅笔的方案数给你一个整数 total ,表示你拥有的总钱数。同时给你两个整数 cost1 和 cost2 ,分别表示一支钢笔和一支铅笔的价格。你可以花费你部分或者全部的钱,去买任意数目的两种笔。请你返回购买钢笔和铅笔的 不同方案数目 。

6061. 买钢笔和铅笔的方案数

给你一个整数 total ,表示你拥有的总钱数。同时给你两个整数 cost1 和 cost2 ,分别表示一支钢笔和一支铅笔的价格。你可以花费你部分或者全部的钱,去买任意数目的两种笔。

请你返回购买钢笔和铅笔的 不同方案数目 。

示例 1:

输入:total = 20, cost1 = 10, cost2 = 5
输出:9
解释:一支钢笔的价格为 10 ,一支铅笔的价格为 5 。

  • 如果你买 0 支钢笔,那么你可以买 0 ,1 ,2 ,3 或者 4 支铅笔。
  • 如果你买 1 支钢笔,那么你可以买 0 ,1 或者 2 支铅笔。
  • 如果你买 2 支钢笔,那么你没法买任何铅笔。 所以买钢笔和铅笔的总方案数为 5 + 3 + 1 = 9 种。

示例 2:

输入:total = 5, cost1 = 10, cost2 = 10
输出:1
解释:钢笔和铅笔的价格都为 10,都比拥有的钱数多,所以你没法购买任何文具。所以只有 1 种方案:买 0 支钢笔和 0 支铅笔。

提示:

1 <= total, cost1, cost2 <= 106

来源:力扣

解题思路:

第一步,光买钢笔有几种方案

 a = int(total/cost1)+1

因为0只钢笔也算一种方案,所以加一

第二步,买钢笔后,剩下的钱能购买多少铅笔

int((total-cost1*n)/cost2)

第三步,在买钢笔的几种方案下,剩下的钱购买铅笔有几种方案

for n in range(a):
    int((total-cost1*n)/cost2)+1

第四步,将所有方案相加

b = 0
for n in range(a):
    b += int((total-cost1*n)/cost2)+1

代码整合:

class Solution(object):
    def waysToBuyPensPencils(self, total, cost1, cost2):
        """
        :type total: int
        :type cost1: int
        :type cost2: int
        :rtype: int
        """
        a = int(total/cost1)+1
        b = 0
        for n in range(a):
            b += int((total-cost1*n)/cost2)+1
        return b

6060. 找到最接近 0 的数字

给你一个长度为 n 的整数数组 nums ,请你返回 nums 中最 接近 0 的数字。如果有多个答案,请你返回它们中的 最大值 。

示例 1:

输入:nums = [-4,-2,1,4,8]
输出:1
解释:
-4 到 0 的距离为 |-4| = 4 。
-2 到 0 的距离为 |-2| = 2 。 1 到 0 的距离为 |1| = 1 。 4 到 0 的距离为 |4| = 4 。 8 到 0 的距离为 |8| = 8 。 所以,数组中距离 0 最近的数字为 1 。

示例 2:

输入:nums = [2,-1,1]
输出:1
解释:1 和 -1 都是距离 0 最近的数字,所以返回较大值 1 。

提示:

1 <= n <= 1000
-105 <= nums[i] <= 105

解题思路:

第一步,求出每个数到0的距离

for i in nums:
    n.append(abs(i-0))

第二步,最小距离的索引值

m = [x for x ,y in list(enumerate(n)) if y ==min(n)]

第三步,距离0最近的数字

for k in m:
    p.append(nums[k])

第四步,返回较大值

return max(p)

代码整合:

class Solution(object):
    def findClosestNumber(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        n = []
        p = []
        m = []
        for i in nums:
            n.append(abs(i-0))
        m = [x for x ,y in list(enumerate(n)) if y ==min(n)]
        for k in m:
            p.append(nums[k])
        return max(p)

优化后:

class Solution(object):
    def findClosestNumber(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        nums.sort(key = lambda x : (abs(x), -x))
        return nums[0]
目录
相关文章
|
2月前
|
机器学习/深度学习 JSON Java
Java调用Python的5种实用方案:从简单到进阶的全场景解析
在机器学习与大数据融合背景下,Java与Python协同开发成为企业常见需求。本文通过真实案例解析5种主流调用方案,涵盖脚本调用到微服务架构,助力开发者根据业务场景选择最优方案,提升开发效率与系统性能。
687 0
|
3月前
|
数据采集 数据可视化 API
驱动业务决策:基于Python的App用户行为分析与可视化方案
驱动业务决策:基于Python的App用户行为分析与可视化方案
|
5月前
|
数据采集 数据可视化 JavaScript
用Python采集CBC新闻:如何借助海外代理IP构建稳定采集方案
本文介绍了如何利用Python技术栈结合海外代理IP采集加拿大CBC新闻数据。内容涵盖使用海外代理IP的必要性、青果代理IP的优势、实战爬取流程、数据清洗与可视化分析方法,以及高效构建大规模新闻采集方案的建议。适用于需要获取国际政治经济动态信息的商业决策、市场预测及学术研究场景。
|
4月前
|
JavaScript Java Go
Go、Node.js、Python、PHP、Java五种语言的直播推流RTMP协议技术实施方案和思路-优雅草卓伊凡
Go、Node.js、Python、PHP、Java五种语言的直播推流RTMP协议技术实施方案和思路-优雅草卓伊凡
305 0
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
247 6
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
7月前
|
数据采集 自然语言处理 JavaScript
Playwright多语言生态:跨Python/Java/.NET的统一采集方案
随着数据采集需求的增加,传统爬虫工具如Selenium、Jsoup等因语言割裂、JS渲染困难及代理兼容性差等问题,难以满足现代网站抓取需求。微软推出的Playwright框架,凭借多语言支持(Python/Java/.NET/Node.js)、统一API接口和优异的JS兼容性,解决了跨语言协作、动态页面解析和身份伪装等痛点。其性能优于Selenium与Puppeteer,在学术数据库(如Scopus)抓取中表现出色。行业应用广泛,涵盖高校科研、大型数据公司及AI初创团队,助力构建高效稳定的爬虫系统。
416 2
Playwright多语言生态:跨Python/Java/.NET的统一采集方案
|
7月前
|
数据采集 数据可视化 数据挖掘
基于Python的App流量大数据分析与可视化方案
基于Python的App流量大数据分析与可视化方案
|
7月前
|
前端开发 JavaScript API
Webview+Python:用HTML打造跨平台桌面应用的创新方案
本文系统介绍了使用PyWebView库结合HTML/CSS/JavaScript开发跨平台桌面应用的方法。相比传统方案(如PyQt、Tkinter),PyWebView具备开发效率高、界面美观、资源占用低等优势。文章从技术原理、环境搭建、核心功能实现到性能优化与实战案例全面展开,涵盖窗口管理、双向通信、系统集成等功能,并通过“智能文件管理器”案例展示实际应用。适合希望快速构建跨平台桌面应用的Python开发者参考学习。
805 1
|
8月前
|
数据采集 存储 安全
Python爬虫实战:利用短效代理IP爬取京东母婴纸尿裤数据,多线程池并行处理方案详解
本文分享了一套结合青果网络短效代理IP和多线程池技术的电商数据爬取方案,针对京东母婴纸尿裤类目商品信息进行高效采集。通过动态代理IP规避访问限制,利用多线程提升抓取效率,同时确保数据采集的安全性和合法性。方案详细介绍了爬虫开发步骤、网页结构分析及代码实现,适用于大规模电商数据采集场景。
|
11月前
|
机器学习/深度学习 Rust 算法
Python环境管理的新选择:UV和Pixi,高性能Python环境管理方案
近期Python生态系统在包管理领域发生了重要变化,Anaconda调整商业许可证政策,促使社区寻找更开放的解决方案。本文介绍两款新一代Python包管理工具:UV和Pixi。UV用Rust编写,提供高性能依赖解析和项目级环境管理;Pixi基于Conda生态系统,支持conda-forge和PyPI包管理。两者分别适用于高性能需求和深度学习项目,为开发者提供了更多选择。
2423 2

热门文章

最新文章

推荐镜像

更多