【LeetCode力扣】单调栈解决Next Greater Number(下一个更大值)问题

简介: 【LeetCode力扣】单调栈解决Next Greater Number(下一个更大值)问题

1、题目介绍



示例1:


输入:nums1 = [4,1,2], nums2 = [1,3,4,2].

输出:[-1,3,-1]

解释:nums1 中每个值的下一个更大元素如下所述:

- 4 ,用加粗斜体标识,nums2 = [1,3,4,2]。不存在下一个更大元素,所以答案是 -1 。

- 1 ,用加粗斜体标识,nums2 = [1,3,4,2]。下一个更大元素是 3 。

- 2 ,用加粗斜体标识,nums2 = [1,3,4,2]。不存在下一个更大元素,所以答案是 -1 。


实例2:


输入:nums1 = [2,4], nums2 = [1,2,3,4].

输出:[3,-1]

解释:nums1 中每个值的下一个更大元素如下所述:

- 2 ,用加粗斜体标识,nums2 = [1,2,3,4]。下一个更大元素是 3 。

- 4 ,用加粗斜体标识,nums2 = [1,2,3,4]。不存在下一个更大元素,所以答案是 -1 。


提示:


  • 1 <= nums1.length <= nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 10^4
  • nums1和nums2中所有整数 互不相同
  • nums1 中的所有整数同样出现在 nums2 中

2、解题思路

       该题如果使用暴力破解法,其代码实现过程是很容易想到的,只需要找到nums1此时的元素在nums2中的位置,并向右查询是否存在更大的值,有则返回该值,无则返回-1即可。结合思想不难想到时间复杂度为O(m*n),m和n分别为两个数组各自的长度。虽然该题直接使用暴力破解法可以直接通过,但是只是出题人没有为难大家,如果该题的数据非常庞大,此时直接使用暴力破解法必然会导致超时。而本文将讲解单调队列的算法模版解决这类问题,它能够很好的将时间复杂度控制在O(m+n)。


下面将使用两种方法来解题,一种是暴力破解法,一种是Next Greater Number问题解法。


2.1、暴力破解法

从头开始遍历nums1,每次遍历从nums2中找到对应元素,然后从该元素的下一个元素开始依次比较,找出大于该值的第一个元素即可。


【代码实现】


class Solution {
    public int[] nextGreaterElement(int[] nums1, int[] nums2) {
        int m = nums1.length, n = nums2.length;
        int[] res = new int[m];
        for (int i = 0; i < m; ++i) {
            int j = 0;
            while (j < n && nums2[j] != nums1[i]) {  //在nums2中找到该值
                ++j;
            }
            int k = j + 1;
            while (k < n && nums2[k] < nums2[j]) {   //从该值的下一个元素开始向右查找
                ++k;
            }
            res[i] = k < n ? nums2[k] : -1;    //超出nums2数组长度则表示不存在比该值大的数,返回-1
        }
        return res;
    }
}

时间复杂度:O(m*n),m和n分别为两数组的长度。


空间复杂度:O(1)。


2.2、经典Next Greater Number问题解法

首先需要补充一些知识点,下面用一个比较抽象的例子讲解:


把数组的元素想象成并列站立的人,元素大小想象成人的身高。视线从左往右,这些人面对你站成一列。如何求第一个元素【2】的下一个更大值呢?,其实很简单,只要没被该元素【2】挡住的第一个元素,就是【2】的下一个更大值,如下图所示,第一个【2】没有挡住的第一个元素就是【4】,此时【4】就是【2】的下一个更大值。



当理解了这个前提后,我们从后往前遍历该数组:


【3】,【3】背后看不到任何元素,即没有比它更大的右元素,因此next greater为-1;


【4】,【4】背后依然看不到任何元素(3被挡住了),此时next greater为-1;


【2】,【2】背后看到的第一个元素是4,因此next greater为4;(绿色2)


【1】,【1】背后看到的第一个元素是2,因此next greater为2;


【2】,【2】背后看到的第一个元素是4,因此next greater为4;(蓝色2)


在代码中为了记录某个值背后没被挡住的第一个元素,这里使用栈stack来记录,入栈出栈规则:当前值比栈中元素大时(证明被挡住了),将该值出栈,直至栈空或当前值小于栈顶元素,此时栈顶元素即为next greater;随后将当前值入栈。


因此我们需要做的就是从后往前遍历nums2数组,并计算出nums2对于的next greater,同时使用Map将【nums2的该值】以及【该值的next greater】记录下来,最后遍历nums1数组,从Map中取出对应值的next greater存入返回数组ret中即可。下面是代码实现部分。


【代码实现】


class Solution {
    public int[] nextGreaterElement(int[] nums1, int[] nums2) {
        Stack<Integer> stack = new Stack<>();
        Map<Integer,Integer> map = new HashMap<>();
        for(int i = nums2.length - 1; i >= 0; i--) {   //从后往前
            int num = nums2[i];
            while(!stack.isEmpty() && stack.peek() <= num) {   //栈内元素小于等于当前值时,出栈
                stack.pop();       //让栈始终保持只有【大于】当前值的元素
            }
            map.put(num,stack.isEmpty() ? -1 : stack.peek());   //map记录该值的下一个最大值,没有则-1
            stack.push(num);
        }
        int[] ret = new int[nums1.length];
        for(int i = 0; i < nums1.length; i++) {    //将map中的对应值取出存入返回数组
            ret[i] = map.get(nums1[i]);
        }
        return ret;
    }
}


时间复杂度:O(m+n),m和n分别为两数组的长度。


空间复杂度:O(n),用于存储哈希表。


目录
相关文章
|
9天前
|
存储 SQL 算法
LeetCode力扣第114题:多种算法实现 将二叉树展开为链表
LeetCode力扣第114题:多种算法实现 将二叉树展开为链表
|
4天前
|
存储 算法 Python
二刷力扣--栈和队列
二刷力扣--栈和队列
|
5天前
|
容器
【LeetCode刷题】栈和队列题目练习~
【LeetCode刷题】栈和队列题目练习~
|
9天前
|
存储 算法 数据可视化
力扣155题最全解法:如何实现支持常数时间获取最小值的最小栈(附详细图解和复杂度分析)
力扣155题最全解法:如何实现支持常数时间获取最小值的最小栈(附详细图解和复杂度分析)
|
9天前
|
算法 数据可视化 数据挖掘
最佳加油站选择算法:解决环路加油问题的两种高效方法|LeetCode力扣134
最佳加油站选择算法:解决环路加油问题的两种高效方法|LeetCode力扣134
|
9天前
|
存储 算法 数据可视化
LeetCode 力扣题目:买卖股票的最佳时机 IV
LeetCode 力扣题目:买卖股票的最佳时机 IV
|
9天前
|
存储 算法 数据可视化
LeetCode 力扣题目:买卖股票的最佳时机 III
LeetCode 力扣题目:买卖股票的最佳时机 III
|
9天前
|
存储 缓存 算法
LeetCode力扣题目111:多种算法对比实现二叉树的最小深度
LeetCode力扣题目111:多种算法对比实现二叉树的最小深度
|
9天前
|
存储 SQL 算法
LeetCode题目100:递归、迭代、dfs使用栈多种算法图解相同的树
LeetCode题目100:递归、迭代、dfs使用栈多种算法图解相同的树
|
9天前
|
存储 SQL 算法
LeetCode 题目 94:五种算法递归|迭代|莫里斯|线索二叉树|栈的迭代二叉树 实现中序遍历
LeetCode 题目 94:五种算法递归|迭代|莫里斯|线索二叉树|栈的迭代二叉树 实现中序遍历