【LeetCode力扣】面试题 17.14. 最小K个数(top-k问题)

简介: 【LeetCode力扣】面试题 17.14. 最小K个数(top-k问题)

1、题目介绍


题目要求非常简短,也非常简单,就是求一组数中的k个最小数。


2、解题思路

       如果在正常刷题过程中遇到这种题,那么这道题毋庸置疑是秒杀题,使用最简单的冒泡排序亦或者是直接使用Java中Arrays类的方法sort直接排序后,再取出前k个值。


       但是,这是一道面试题,面试题的精髓就是要尽可能的压缩时间复杂度和空间复杂度,以达到给面试官眼前一亮的效果。显然直接使用自带的排序很难给面试官眼前一亮的效果,而该题有一种统称叫:top-k问题,使用top-k问题经典的解法可以将时间复杂度控制在O(N*logK),空间复杂度O(K)。


下面将使用两种方法来解题,一种是正常解法,一种是top-k问题解法。


2.1、优先队列解法

直接使用优先队列将数组arr中的所有元素入队,最终队中的队头便是最小值,只需要依次出队并存入到返回数组ret中即可。


【完整代码】


class Solution {
    public int[] smallestK(int[] arr, int k) {
        int[] ret = new int[k];
        if(k == 0) {
            return ret;
        }
        Queue<Integer> queue = new PriorityQueue<>();   //优先队列,默认小根堆
        for(int i = 0 ; i < arr.length; i++) {   //依次入队
            queue.offer(arr[i]);
        }
        for(int i = 0; i < k; i++) {   //依次出队并存入
            ret[i] = queue.poll();
        }
        return ret;
    }
}

但是显然这样的解法非常的普遍,并不能让面试官眼前一亮,下面带大家认识一下另一个解法,也就是top-k问题的解法。


2.2、top-k问题解法

       top-k问题:即求数据集合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。


       对于top-k问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:


1. 用数据集合中前K个元素来建堆


前k个最大的元素,则建小堆

前k个最小的元素,则建大堆

2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素


将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。


【思路讲解】


以题目示例为例:


首先用前k个元素建大根堆



用剩余的N-K个元素依次与堆顶元素来比较,如果此时小于堆顶(即队头)则替换堆顶元素。


这样做的原理非常简单:因为此时是大根堆,队头元素即为堆中最大值,如果此时堆外元素还有比堆顶元素小的,那么证明堆顶元素肯定不属于k个最小元素中的一个,此时需要将堆顶(即队头)出队,然后将该元素入队,并重新调整成大根堆。



此时从上图可发现,2小于堆顶(即队头)7,因此需要将7出队,2入队,并调整堆。



此时从上图可发现,4小于堆顶(即队头)5,因此需要将5出队,4入队,并调整堆。



而后面的6,8都不小于堆顶4,因此堆没有变化,最后得到的大根堆内的所有元素即题目所求的元素,只需要将堆内元素依次出队即可。


【完整代码】


class Solution {
    public int[] smallestK(int[] arr, int k) {
        int[] ret = new int[k];
        if(k == 0) {
            return ret;
        }
        Queue<Integer> queue = new PriorityQueue<>(new ComparaBig()); 
        for(int i = 0; i < k; i++) {   //用前k个元素建大根堆
            queue.offer(arr[i]);
        }
        for(int i = k; i < arr.length; i++) {   //堆顶元素与后续的n-k个元素依次比较
            if(queue.peek() > arr[i]) {    //当发现当前元素小于堆顶元素时,出队堆顶元素,入队当前元素
                queue.poll();
                queue.offer(arr[i]);
            }
        }
        for(int i = 0; i < k; i++) {   //将堆中所有元素出队,依次放到返回数组ret中
            ret[i] = queue.poll();
        }
        return ret;
    }
}
//Java自带的优先队列为小根堆,该题需要使用大根堆,因此需要重写比较器
class ComparaBig implements Comparator<Integer> {  
    @Override
    public int compare(Integer o1, Integer o2) {
        return o2 - o1;
    }
}


时间复杂度:O(nlogk),其中 n 是数组 arr 的长度。由于大根堆实时维护前 k 小值,所以插入删除都是 O(logk) 的时间复杂度,最坏情况下数组里 n 个数都会插入,所以一共需要 O(nlogk) 的时间复杂度。

空间复杂度:O(k),因为大根堆里最多 k 个数。


目录
相关文章
|
11天前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
29 1
|
11天前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
37 1
|
25天前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
104 14
|
11天前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
28 0
|
11天前
|
算法 Go 索引
【LeetCode 热题100】回溯:括号生成 & 组合总和(力扣22 / 39 )(Go语言版)
本文深入解析了LeetCode上的两道经典回溯算法题:**22. 括号生成**与**39. 组合总和**。括号生成通过维护左右括号数量,确保路径合法并构造有效组合;组合总和则允许元素重复选择,利用剪枝优化搜索空间以找到所有满足目标和的组合。两者均需明确路径、选择列表及结束条件,同时合理运用剪枝策略提升效率。文章附有Go语言实现代码,助你掌握回溯算法的核心思想。
33 0
|
2月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
64 4
|
2月前
|
算法 Go
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
67 10
|
8月前
|
程序员 C语言
【C语言】LeetCode(力扣)上经典题目
【C语言】LeetCode(力扣)上经典题目
136 1
|
8月前
|
索引
力扣(LeetCode)数据结构练习题(3)------链表
力扣(LeetCode)数据结构练习题(3)------链表
179 0
|
8月前
力扣(LeetCode)数据结构练习题(2)
力扣(LeetCode)数据结构练习题(2)
66 0

热门文章

最新文章