Python爬虫入门教程 40-100 博客园Python相关40W博客抓取 scrapy

简介: 爬前叨叨第40篇博客吹响号角,爬取博客园博客~本文最终抓取到了从2010年1月1日到2019年1月7日的37W+文章,后面可以分析好多东西了呢经常看博客的同志知道,博客园每个栏目下面有200页,多了的数据他就不显示了,最多显示4000篇博客如何尽可能多的得到博客数据,是这篇文章研究的一点点核心...

爬前叨叨

第40篇博客吹响号角,爬取博客园博客~本文最终抓取到了从2010年1月1日到2019年1月7日的37W+文章,后面可以分析好多东西了呢

经常看博客的同志知道,博客园每个栏目下面有200页,多了的数据他就不显示了,最多显示4000篇博客如何尽可能多的得到博客数据,是这篇文章研究的一点点核心内容,能√get到多少就看你的了~

image

单纯的从每个栏目去爬取是不显示的,转换一下思路,看到搜索页面,有时间~,有时间!
image

注意看URL链接

https://zzk.cnblogs.com/s/blogpost?Keywords=python&datetimerange=Customer&from=2019-01-01&to=2019-01-01  

这个链接得到之后,其实用一个比较简单的思路就可以获取到所有python相关的文章了,迭代时间。
下面编写核心代码,比较重要的几个点,我单独提炼出来。

  1. 页面搜索的时候因为加了验证,所以你必须要获取到你本地的cookie,这个你很容易得到
  2. 字典生成器的语法是时候去复习一下了
import scrapy
from scrapy import Request,Selector
import time
import datetime

class BlogsSpider(scrapy.Spider):
    name = 'Blogs'
    allowed_domains = ['zzk.cnblogs.com']
    start_urls = ['http://zzk.cnblogs.com/']
    from_time = "2010-01-01"
    end_time = "2010-01-01"
    keywords = "python"
    page =1
    url = "https://zzk.cnblogs.com/s/blogpost?Keywords={keywords}&datetimerange=Customer&from={from_time}&to={end_time}&pageindex={page}"
    custom_settings = {
        "DEFAULT_REQUEST_HEADERS":{
            "HOST":"zzk.cnblogs.com",
            "TE":"Trailers",
            "referer": "https://zzk.cnblogs.com/s/blogpost?w=python",
            "upgrade-insecure-requests": "1",
            "user-agent": "Mozilla/5.0 Gecko/20100101 Firefox/64.0"

        }
    }


    def start_requests(self):
        cookie_str = "想办法自己获取到"
        self.cookies = {item.split("=")[0]: item.split("=")[1] for item in cookie_str.split("; ")}
        yield Request(self.url.format(keywords=self.keywords,from_time=self.from_time,end_time=self.end_time,page=self.page),cookies=self.cookies,callback=self.parse)

页面爬取完毕之后,需要进行解析,获取翻页页码,同时将时间+1天,下面的代码重点看时间叠加部分的操作。

    def parse(self, response):
        print("正在爬取",response.url)
        count = int(response.css('#CountOfResults::text').extract_first()) # 获取是否有数据
        if count>0:
            for page in range(1,int(count/10)+2):
                # 抓取详细数据
                yield Request(self.url.format(keywords=self.keywords,from_time=self.from_time,end_time=self.end_time,page=page),cookies=self.cookies,callback=self.parse_detail,dont_filter=True)

        time.sleep(2)
        # 跳转下一个日期
        d = datetime.datetime.strptime(self.from_time, '%Y-%m-%d')
        delta = datetime.timedelta(days=1)
        d = d + delta
        self.from_time = d.strftime('%Y-%m-%d')
        self.end_time =self.from_time
        yield Request(
            self.url.format(keywords=self.keywords, from_time=self.from_time, end_time=self.end_time, page=self.page),
            cookies=self.cookies, callback=self.parse, dont_filter=True)

页面解析入库

本部分操作逻辑没有复杂点,只需要按照流程编写即可,运行代码,跑起来,在mongodb等待一些时间

db.getCollection('dict').count({}) 

返回

372352条数据

    def parse_detail(self,response):
        items = response.xpath('//div[@class="searchItem"]')
        for item in items:
            title = item.xpath('h3[@class="searchItemTitle"]/a//text()').extract()
            title = "".join(title)

            author = item.xpath(".//span[@class='searchItemInfo-userName']/a/text()").extract_first()
            public_date = item.xpath(".//span[@class='searchItemInfo-publishDate']/text()").extract_first()
            pv = item.xpath(".//span[@class='searchItemInfo-views']/text()").extract_first()
            if pv:
                pv = pv[3:-1]
            url = item.xpath(".//span[@class='searchURL']/text()").extract_first()
            #print(title,author,public_date,pv)
            yield {
                "title":title,
                "author":author,
                "public_date":public_date,
                "pv":pv,
                "url":url
            }

数据入库

一顿操作猛如虎,数据就到手了~后面可以做一些简单的数据分析,那篇博客再见啦@

相关文章
|
11月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
1132 0
分布式爬虫框架Scrapy-Redis实战指南
|
6月前
|
数据采集 存储 JSON
地区电影市场分析:用Python爬虫抓取猫眼/灯塔专业版各地区票房
地区电影市场分析:用Python爬虫抓取猫眼/灯塔专业版各地区票房
|
9月前
|
数据采集 Web App开发 JavaScript
基于Selenium的Python爬虫抓取动态App图片
基于Selenium的Python爬虫抓取动态App图片
644 68
|
6月前
|
数据采集 存储 XML
Python爬虫XPath实战:电商商品ID的精准抓取策略
Python爬虫XPath实战:电商商品ID的精准抓取策略
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
607 6
|
9月前
|
数据采集 存储 前端开发
Python爬虫自动化:批量抓取网页中的A链接
Python爬虫自动化:批量抓取网页中的A链接
|
9月前
|
JSON API 数据格式
手把手教你抓取京东商品评论:API 接口解析与 Python 实战
京东商品评论蕴含用户对产品质量、体验和服务的真实反馈,分析这些数据有助于企业优化产品和满足用户需求。由于京东未提供官方API,需通过逆向工程获取评论数据。其主要接口为“商品评论列表接口”,支持按商品ID、评分、排序方式等参数获取评论,返回JSON格式数据,包含评论列表、摘要(如好评率)及热门标签等信息。
|
9月前
|
数据采集 存储 监控
Scrapy框架下地图爬虫的进度监控与优化策略
Scrapy框架下地图爬虫的进度监控与优化策略
|
10月前
|
数据采集 存储 缓存
Python爬虫与代理IP:高效抓取数据的实战指南
在数据驱动的时代,网络爬虫是获取信息的重要工具。本文详解如何用Python结合代理IP抓取数据:从基础概念(爬虫原理与代理作用)到环境搭建(核心库与代理选择),再到实战步骤(单线程、多线程及Scrapy框架应用)。同时探讨反爬策略、数据处理与存储,并强调伦理与法律边界。最后分享性能优化技巧,助您高效抓取公开数据,实现技术与伦理的平衡。
492 4
|
10月前
|
数据采集 JSON API
Python 实战:用 API 接口批量抓取小红书笔记评论,解锁数据采集新姿势
小红书作为社交电商的重要平台,其笔记评论蕴含丰富市场洞察与用户反馈。本文介绍的小红书笔记评论API,可获取指定笔记的评论详情(如内容、点赞数等),支持分页与身份认证。开发者可通过HTTP请求提取数据,以JSON格式返回。附Python调用示例代码,帮助快速上手分析用户互动数据,优化品牌策略与用户体验。
1845 3

推荐镜像

更多