Python爬虫入门教程 40-100 博客园Python相关40W博客抓取 scrapy

简介: 爬前叨叨第40篇博客吹响号角,爬取博客园博客~本文最终抓取到了从2010年1月1日到2019年1月7日的37W+文章,后面可以分析好多东西了呢经常看博客的同志知道,博客园每个栏目下面有200页,多了的数据他就不显示了,最多显示4000篇博客如何尽可能多的得到博客数据,是这篇文章研究的一点点核心...

爬前叨叨

第40篇博客吹响号角,爬取博客园博客~本文最终抓取到了从2010年1月1日到2019年1月7日的37W+文章,后面可以分析好多东西了呢

经常看博客的同志知道,博客园每个栏目下面有200页,多了的数据他就不显示了,最多显示4000篇博客如何尽可能多的得到博客数据,是这篇文章研究的一点点核心内容,能√get到多少就看你的了~

image

单纯的从每个栏目去爬取是不显示的,转换一下思路,看到搜索页面,有时间~,有时间!
image

注意看URL链接

https://zzk.cnblogs.com/s/blogpost?Keywords=python&datetimerange=Customer&from=2019-01-01&to=2019-01-01  

这个链接得到之后,其实用一个比较简单的思路就可以获取到所有python相关的文章了,迭代时间。
下面编写核心代码,比较重要的几个点,我单独提炼出来。

  1. 页面搜索的时候因为加了验证,所以你必须要获取到你本地的cookie,这个你很容易得到
  2. 字典生成器的语法是时候去复习一下了
import scrapy
from scrapy import Request,Selector
import time
import datetime

class BlogsSpider(scrapy.Spider):
    name = 'Blogs'
    allowed_domains = ['zzk.cnblogs.com']
    start_urls = ['http://zzk.cnblogs.com/']
    from_time = "2010-01-01"
    end_time = "2010-01-01"
    keywords = "python"
    page =1
    url = "https://zzk.cnblogs.com/s/blogpost?Keywords={keywords}&datetimerange=Customer&from={from_time}&to={end_time}&pageindex={page}"
    custom_settings = {
        "DEFAULT_REQUEST_HEADERS":{
            "HOST":"zzk.cnblogs.com",
            "TE":"Trailers",
            "referer": "https://zzk.cnblogs.com/s/blogpost?w=python",
            "upgrade-insecure-requests": "1",
            "user-agent": "Mozilla/5.0 Gecko/20100101 Firefox/64.0"

        }
    }


    def start_requests(self):
        cookie_str = "想办法自己获取到"
        self.cookies = {item.split("=")[0]: item.split("=")[1] for item in cookie_str.split("; ")}
        yield Request(self.url.format(keywords=self.keywords,from_time=self.from_time,end_time=self.end_time,page=self.page),cookies=self.cookies,callback=self.parse)

页面爬取完毕之后,需要进行解析,获取翻页页码,同时将时间+1天,下面的代码重点看时间叠加部分的操作。

    def parse(self, response):
        print("正在爬取",response.url)
        count = int(response.css('#CountOfResults::text').extract_first()) # 获取是否有数据
        if count>0:
            for page in range(1,int(count/10)+2):
                # 抓取详细数据
                yield Request(self.url.format(keywords=self.keywords,from_time=self.from_time,end_time=self.end_time,page=page),cookies=self.cookies,callback=self.parse_detail,dont_filter=True)

        time.sleep(2)
        # 跳转下一个日期
        d = datetime.datetime.strptime(self.from_time, '%Y-%m-%d')
        delta = datetime.timedelta(days=1)
        d = d + delta
        self.from_time = d.strftime('%Y-%m-%d')
        self.end_time =self.from_time
        yield Request(
            self.url.format(keywords=self.keywords, from_time=self.from_time, end_time=self.end_time, page=self.page),
            cookies=self.cookies, callback=self.parse, dont_filter=True)

页面解析入库

本部分操作逻辑没有复杂点,只需要按照流程编写即可,运行代码,跑起来,在mongodb等待一些时间

db.getCollection('dict').count({}) 

返回

372352条数据

    def parse_detail(self,response):
        items = response.xpath('//div[@class="searchItem"]')
        for item in items:
            title = item.xpath('h3[@class="searchItemTitle"]/a//text()').extract()
            title = "".join(title)

            author = item.xpath(".//span[@class='searchItemInfo-userName']/a/text()").extract_first()
            public_date = item.xpath(".//span[@class='searchItemInfo-publishDate']/text()").extract_first()
            pv = item.xpath(".//span[@class='searchItemInfo-views']/text()").extract_first()
            if pv:
                pv = pv[3:-1]
            url = item.xpath(".//span[@class='searchURL']/text()").extract_first()
            #print(title,author,public_date,pv)
            yield {
                "title":title,
                "author":author,
                "public_date":public_date,
                "pv":pv,
                "url":url
            }

数据入库

一顿操作猛如虎,数据就到手了~后面可以做一些简单的数据分析,那篇博客再见啦@

相关文章
|
1天前
|
数据采集 存储 缓存
Python爬虫与代理IP:高效抓取数据的实战指南
在数据驱动的时代,网络爬虫是获取信息的重要工具。本文详解如何用Python结合代理IP抓取数据:从基础概念(爬虫原理与代理作用)到环境搭建(核心库与代理选择),再到实战步骤(单线程、多线程及Scrapy框架应用)。同时探讨反爬策略、数据处理与存储,并强调伦理与法律边界。最后分享性能优化技巧,助您高效抓取公开数据,实现技术与伦理的平衡。
17 4
|
8天前
|
数据采集 前端开发 JavaScript
Scrapy结合Selenium实现搜索点击爬虫的最佳实践
Scrapy结合Selenium实现搜索点击爬虫的最佳实践
|
14天前
|
数据采集 存储 NoSQL
如何避免Python爬虫重复抓取相同页面?
如何避免Python爬虫重复抓取相同页面?
|
27天前
|
Web App开发 数据采集 前端开发
Python + Chrome 爬虫:如何抓取 AJAX 动态加载数据?
Python + Chrome 爬虫:如何抓取 AJAX 动态加载数据?
|
1月前
|
数据采集 JSON 监控
Haskell爬虫:为电商运营抓取京东优惠券的实战经验
Haskell爬虫:为电商运营抓取京东优惠券的实战经验
|
5月前
|
数据采集 JSON JavaScript
如何通过PHP爬虫模拟表单提交,抓取隐藏数据
本文介绍了如何使用PHP模拟表单提交并结合代理IP技术抓取京东商品的实时名称和价格,特别是在电商大促期间的数据采集需求。通过cURL发送POST请求,设置User-Agent和Cookie,使用代理IP绕过限制,解析返回数据,展示了完整代码示例。
118 3
如何通过PHP爬虫模拟表单提交,抓取隐藏数据
|
5月前
|
数据采集 JavaScript 网络安全
为什么PHP爬虫抓取失败?解析cURL常见错误原因
豆瓣电影评分是电影市场的重要参考,通过网络爬虫技术可以高效采集评分数据,帮助电影制作和发行方优化策略。本文介绍使用PHP cURL库和代理IP技术抓取豆瓣电影评分的方法,解决反爬机制、网络设置和数据解析等问题,提供详细代码示例和优化建议。
204 0
为什么PHP爬虫抓取失败?解析cURL常见错误原因
|
5月前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
265 0
|
5月前
|
数据采集 前端开发 JavaScript
除了网页标题,还能用爬虫抓取哪些信息?
爬虫技术可以抓取网页上的各种信息,包括文本、图片、视频、链接、结构化数据、用户信息、价格和库存、导航菜单、CSS和JavaScript、元数据、社交媒体信息、地图和位置信息、广告信息、日历和事件信息、评论和评分、API数据等。通过Python和BeautifulSoup等工具,可以轻松实现数据抓取。但在使用爬虫时,需遵守相关法律法规,尊重网站的版权和隐私政策,合理控制请求频率,确保数据的合法性和有效性。
|
5月前
|
数据采集 中间件 API
在Scrapy爬虫中应用Crawlera进行反爬虫策略
在Scrapy爬虫中应用Crawlera进行反爬虫策略

热门文章

最新文章