GTC 22 精彩看点 | 锁定阿里云机器学习 PAI 分享

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 3月21日,2022英伟达 GTC 大会即将拉开帷幕。此次 GTC 22 大会上,阿里云将带来有关推理优化/部署、深度学习编译器、大模型部署、训练优化、云手游等主题的内容,分享云端机器学习平台最新的创新实践。

3月21日,2022英伟达 GTC 大会即将拉开帷幕。此次 GTC 22 大会上,阿里云将带来有关推理优化/部署、深度学习编译器、大模型部署、训练优化、云手游等主题的内容,分享云端机器学习平台最新的创新实践。


GTC 22 阿里云精彩演讲提前看

[S41068] PaiSparse:面向深度学习的稀疏加速库

· 李与超,阿里云,高级算法工程师

· 朱斐文,NVIDIA, 高级算法专家

· 3 月 23 日 星期三 | 3:00 PM - 3:25 PM 北京时间

 

随着超大语言模型的流行, 如何部署超大模型正在成为迫切需要解决的问题。非结构化剪枝可以将模型规模缩小99%,让超大语言模型在单卡上部署成为可能。然而超大模型稀疏后会呈现不同的非零分布,而这些分布会直接影响硬件的计算量并影响最终的执行时间。同时与传统的 HPC 任务不同的是,基于训练后的稀疏矩阵分布的 tuning 在深度学习推理中是可以进行的。因此我们提出一个面向深度学习的稀疏加速库:PaiSparse,可以自动生成更高效的稀疏算子。实验表明,与 cuSparse 相比,PaiSparse 可以提速1.5~5倍。

 

话题链接:https://www.nvidia.com/gtc/session-catalog/#/session/1634303703593001XjhX

 

[S41501] PTXC:使用 XLA 编译器通过云 GPU 扩展 PyTorch 训练

· 刘小勇,高级主任工程师

· 3 月 23 日 星期三 | 9:00 PM - 9:25 PM 北京时间

 

在工业界实践中,模型训练和部署的效率、规模和适配性关系到最终的应用效果。为满足PyTorch eager-first 的 GPU 编译流程,Lazy Tensor 架构被提出来。通过采用实践验证过的产品化 XLA 编译器和分布式引擎,PTXC 能在阿里云 GPU 集群中以基于编译优化的方式一键快速搭建易用、弹性且高效的 PyTorch 模型训练系统。

 

话题链接:https://www.nvidia.com/gtc/session-catalog/#/session/1637553159784001rkUB

 

[S41395] 通过 PAI-Blade 更易用、更可靠地使用 TensorRT

· 邱侠斐,阿里云,主任工程师

· 郭天佑,阿里云,高级工程师

· 李澜博,阿里云,高级工程师

· 3 月 24 日 星期四 | 9:00 AM - 9:25 AM 北京时间

 

TensorRT 是英伟达推出的业界领先的推理加速器,在深度学习推理场景应用广泛,但是通过 TensorRT 来优化深度学习模型仍有一定门槛。首先,通过 TensorRT 解析模型时会遇到转换失败或表现不理想的情况。其次,从零开始搭建网络比较耗时且难以扩展。此外,在生产环境里增加新的推理框架需要严谨的评估。本次演讲将介绍如何通过一站式 AI 加速器 PAI-Blade 解决上述问题。PAI-Blade 能够实现 TensorRT 后端上的自动圈图和自动化运行。同时还可以与 TensorRT Plugin 协同工作,以实现更好的性能。目前 PAI-Blade 提供对 TensorFlow 和 PyTorch 的产品化支持。

 

话题链接:https://www.nvidia.com/gtc/session-catalog/#/session/1635516028378001Pxlx

 

[S41604] 未来游戏趋势:通过阿里云弹性云手机解决方案打造云游戏

· 杨铭,阿里云,高级工程师

· 3 月 24 日 星期四|11:00 AM - 11:25 AM 北京时间

 

基于英伟达 T4 及原生的 ARM 平台,阿里云设计研发了高性能的云手游解决方案——弹性云手机,可实现虚拟化渲染及显存隔离,在确保隔离的情况下充分发挥 T4 性能。此外,弹性云手机无缝对接阿里巴巴云游戏流媒体平台,该平台兼容多种流媒体协议,并具备完整的“渲染-编码-串流”云手游架构。

 

话题链接:https://www.nvidia.com/gtc/session-catalog/#/session/1638429961776001IhJm

 

[S41383] 云端 Triton 生产实践

· 李文鹏,阿里云,主任工程师

· 邱侠斐,阿里云,主任工程师

· 李澜博,阿里云,高级工程师

· 3 月 24 日 星期四 | 1:00 PM - 1:25 PM 北京时间

 

Triton 推理服务器是一款功能全面、可扩展且功能强大的推理解决方案,在边缘设备和云上皆可部署。在云上将 Triton 部署到生产环境中时,应考虑效率、可扩展性以及与 Triton 自身外的云上基础设施的集成。我们将介绍在阿里云中通过 PAI- EAS 提供 Triton 作为云服务的关键见解:1) 一键部署 Triton 集群;2) 根据请求吞吐量扩展 Triton 集群;3) 与 OSS(对象存储服务)原生集成;以及 4) Triton 和 GPU 共享调度。

 

话题链接:https://www.nvidia.com/gtc/session-catalog/#/session/1635349148436001gNSE

 

 

[S41073] 阿里云基于 AI 编译器的通用透明性能解决方案

· 朱凯,阿里云,主任工程师

· 3 月 24 日 星期四 | 2:00 PM - 2:50 PM 北京时间

 

本次演讲将从云服务厂商的视角,分享在云端和机器学习平台上大规模部署 AI 编译器的实战经验。我们将详细介绍近期刚刚开源的动态 shape 深度学习编译器 BladeDISC,包括它的背景和主要特性,具体设计架构和实现细节,动态 shape 语义下的性能优化经验,未来计划以及在 NVIDIA 设备上的应用等。

 

话题链接:https://www.nvidia.com/gtc/session-catalog/#/session/1634431966251001JhrZ

 

GTC 22 阿里云精彩演讲锁定攻略!

 

1. 点击访问 GTC 22 官网  https://www.nvidia.cn/gtc-global/?ncid=GTC-NVMAGGIEJ

2. 注册 GTC 22

3. 登录后可将会议添加至会议日程如下图

4. 开始后登录即可观看会议,若错过直播时间,可登录查看会议点播,随时观看会议

 

 image1.png

 

扫描下方海报二维码,即刻注册 GTC 22,了解阿里云关于推理优化/部署、深度学习编译器、大模型部署、训练优化、云游戏等主题的精彩分享


image2.png

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
26天前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
2月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
119 8
|
30天前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
|
3月前
|
机器学习/深度学习 API 网络架构
"解锁机器学习超级能力!Databricks携手Mlflow,让模型训练与部署上演智能风暴,一触即发,点燃你的数据科学梦想!"
【8月更文挑战第9天】机器学习模型的训练与部署流程复杂,涵盖数据准备、模型训练、性能评估及部署等步骤。本文详述如何借助Databricks与Mlflow的强大组合来管理这一流程。首先需在Databricks环境内安装Mlflow库。接着,利用Mlflow跟踪功能记录训练过程中的参数与性能指标。最后,通过Mlflow提供的模型服务功能,采用REST API或Docker容器等方式部署模型。这一流程充分利用了Databricks的数据处理能力和Mlflow的生命周期管理优势。
138 7
|
3月前
|
机器学习/深度学习 存储 人工智能
【ACL2024】阿里云人工智能平台PAI多篇论文入选ACL2024
近期,阿里云人工智能平台PAI的多篇论文在ACL2024上入选。论文成果是阿里云与阿里集团安全部、华南理工大学金连文教授团队、华东师范大学何晓丰教授团队共同研发。ACL(国际计算语言学年会)是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台PAI在自然语言处理和多模态算法、算法框架能力方面研究获得了学术界认可。
|
3月前
|
机器学习/深度学习 运维 算法
【阿里天池-医学影像报告异常检测】3 机器学习模型训练及集成学习Baseline开源
本文介绍了一个基于XGBoost、LightGBM和逻辑回归的集成学习模型,用于医学影像报告异常检测任务,并公开了达到0.83+准确率的基线代码。
64 9
|
4月前
|
数据采集 人工智能 自然语言处理
阿里云百炼平台深度体验:智能问答与模型训练的创新之旅
在人工智能的浪潮中,阿里云百炼平台以其强大的大模型开发能力,为企业和个人开发者提供了一站式的解决方案。本文将从知识检索应用搭建、模型训练调优以及流程管理功能三个角度,全面评测阿里云百炼平台的实际使用体验。
301 3
|
3月前
|
机器学习/深度学习 存储 缓存
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决

相关产品

  • 人工智能平台 PAI
  • 下一篇
    无影云桌面