10亿参数,10亿张图!Facebook新AI模型SEER实现自监督学习,LeCun大赞最有前途

简介: 刚刚,Facebook公布了一个在10亿张图片上训练的AI模型SEER。该模型包含10亿个参数,可以从网上任何未标记图像的中学习,并在一系列计算机视觉基准上取得了先进的结果。Facebook的这一突破能否实现计算机视觉的自监督学习革命?

微信图片_20220112165434.jpg


无需标签,自我分析数据!


Facebook的新AI模型在革计算机视觉的命?

 

刚刚,Facebook宣布了一个在10亿张图片上训练的AI模型——SEER,是自监督(Self-supervised)的缩写。


微信图片_20220112165436.png

 

该模型包含10亿个参数,可以在几乎没有标签帮助的情况下识别图像中的物体,并在一系列计算机视觉基准上取得了先进的结果。

 

要知道,大多数计算机视觉模型都是从标记的数据集中学习。

 

而Facebook的最新模型则是通过暴露数据各部分之间的关系从数据中来生成标签。

 

这一步被认为对有朝一日实现人类终极智能至关重要。

 


新AI模型SEER在革计算机视觉的命?


参数一直是机器学习系统的基本组成部分,是从历史训练数据中得到的模型的一部分。

 

人工智能的未来在于是否能够不依赖于带注释的数据集,从给定的任何信息中进行推理

 

只要提供文本、图像或其他类型的数据,AI就能够完美地识别照片中的物体、解释文本,或者执行任何要求它执行的其他任务。


微信图片_20220112165442.jpg


Facebook首席科学家Yann LeCun表示,这是构建具有背景知识或「常识」的机器以解决远远超出当今AI任务的最有前途的方法之一。

 

我们已经看到了自然语言处理(NLP)的重大进步。其中,在大量文本上对超大型模型进行自我监督的预训练在自然语言处理方面取得重大突破


微信图片_20220112165444.png

 

现在,Facebook声称自家的SEER计算机视觉模型向这个目标迈进了一步。

 

它可以从互联网上的任何一组随机图像中学习,而不需要进行注释。

 

对视觉的自我监督是一项具有挑战性的任务。

 

对于文本,语义概念可以被分解成离散的单词,但是对于图像,模型必须自己推断哪个像素属于哪个概念

 

同样的概念在不同的图像之间往往会发生变化,这使得问题变得更具挑战性。因此,要想掌握单个概念的变化,就需要查看大量不同的图像。

 

微信图片_20220112165446.png


研究人员通过Instagram的公开的10亿张图片进行模型训练

 

他们发现,让人工智能系统处理复杂的图像数据至少需要两个核心算法

 

一是可以从大量随机图像中学习,无需任何元数据或注释的算法;二是卷积神经网络(ConvNet)足够大,可以从这些数据中捕捉和学习所有视觉概念。

 

卷积神经网络在20世纪80年代首次提出,受到生物学过程的启发,因为模型中各组成部分之间的连接模式类似于视觉皮层。


SEER:10亿张图,无需标记,自主训练数据集


SEER模型结合了最近的架构家族「RegNet」和在线自我监督训练「SwAV」来规模训练数具有10亿参数的数十亿张随机图像。

 

科研团队改编利用了一种新算法,称为SwAV。它起源于FAIR的研究,后被应用于自我监督学习。

 

微信图片_20220112165447.png

 

SwAV 使用在线聚类方法来快速分组具有相似视觉概念的图像,并且能利用图像的相似性改进自我监督学习的先进水平,而且训练时间减少了6倍

 

这种规模的训练模型还需要一个在运行时间和内存方面都效率很高的,又不会损失精确性的模型架构。

 

微信图片_20220112165449.gif

 

幸运的是,FAIR 最近在架构设计领域的一项创新催生了一个称为 RegNets 的新模型家族,它完全符合这些需求。

 

RegNet 模型能够扩展到数十亿甚至数万亿个参数,可以优化这些参数以适应不同的运行时间和内存限制。

 

微信图片_20220112165451.png

 

科研团队对比了SEER在随机IG图像上的预训练和在ImageNET上的预训练,果表明非监督特性比监督特性平均提高了2%

 

为SEER技术添上最后一块砖的是VISSL自我监督学习通用库。

 

服务于SEER的VISSL是开源的,这个通用图书馆能让更广泛的群体可以从图像中进行自我监督学习实验。

 

VISSL是一个基于PyTorch的库,她允许使用各种现代方法在小规模和大规模上进行自我监督训练。

 

微信图片_20220112165453.png

 

VISSL还包含了一个一个广泛的基准套件和一个包括了60多个预先训练模型的模型动物园(model zoo),使研究人员可以比较几个现代自我监督方法。

 

VISSL通过整合现有的几种算法,减少了对每个GPU的内存需要,提高了任意一个给定模型的训练速度,从而实现了大规模的自我监督学习。

 

SEER的自我监督模型建立在与VISSL相同的核心工具之上,并结合了PyTorch的自定义数据加载器,该加载器的数据吞吐量高于默认值。


自监督学习的未来

  

Facebook 表示,SEER在预先训练了10亿张公开的Instagram图片后,性能优于最先进的自监督模型。

 

SEER在目标检测分析、分割和图像分类等任务上也取得了最佳结果。

 

微信图片_20220112165455.png

 

用受欢迎的ImageNet10%的数据集中进行训练时,SEER仍然达到了77.9%的准确率。

 

当只有1%的数据集训练时,SEER的准确率是60.5%

 

接下来,Facebook将发布SEER背后的一些技术,但不会发布算法本身,因为它使用了Instagram用户的数据进行训练。

 

微信图片_20220112165457.jpg

 

麻省理工学院计算知觉和认知实验室的负责人Aude Oliva表示,这种方法将使我们能够实践更多雄心勃勃的视觉识别任务,但是像SEER这样的尖端人工智能算法的庞大规模和复杂性也带来了问题。

 

SEER可能有数十亿或数万亿个神经连接或参数,这样的算法需要大量的计算能力,使可用的芯片供应变得更加紧张

 

Facebook的团队使用了具有32GB RAM的 V100 Nvidia GPU,并且随着模型尺寸的增加,必须将模型放入可用的RAM中。

 

微信图片_20220112165458.jpg

 

长期以来,自我监督学习一直是 Facebook 人工智能的一个重点,因为它使机器能够直接从世界上大量可用的信息中学习,而不仅仅是从专门为人工智能研究创建的训练数据中学习。

 

自我监督学习对计算机视觉的未来有着难以置信的影响,就像它在其他研究领域所做的那样。

 

消除对人工注释和元数据的需求,使计算机视觉社区能够处理更大、更多样化的数据集。

 

Facebook的研究人员表示,「这一突破可以实现计算机视觉的自监督学习革命。

 

微信图片_20220112165500.png


参考资料:

https://ai.facebook.com/blog/seer-the-start-of-a-more-powerful-flexible-and-accessible-era-for-computer-vision/

https://venturebeat.com/2021/03/04/facebooks-new-computer-vision-model-achieves-state-of-the-art-performance-by-learning-from-random-images/

相关文章
|
4天前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
1天前
|
机器学习/深度学习 人工智能 供应链
【通义】AI视界|OpenAI的“草莓”模型预计两周内上线!像人类一样思考!
本文介绍了近期科技领域的五大亮点:OpenAI即将推出的新一代AI模型“草莓”,具备高级推理能力;亚马逊测试AI技术加速有声读物生产,通过语音克隆提高效率;Kimi API新增联网搜索功能,拓宽信息来源;顺丰发布物流行业专用大语言模型“丰语”,提升工作效率;钉钉推出“AI班级群”功能,改善家校沟通体验。更多详情,请访问[通义官网]。
|
5天前
|
人工智能 自然语言处理 数据挖掘
【通义】AI视界|性能超越GPT-4o?最强大的开源AI模型来了……
本文介绍了五项最新AI技术动态,包括性能超越GPT-4o的开源AI模型Reflection70B、智谱清言App限时免费的视频通话功能、哈佛医学院研发的癌症诊断AI模型CHIEF、Replit推出的AI编程助手,以及英特尔与日本AIST合作设立的芯片制造研发中心。这些进展展示了AI领域的快速创新与广泛应用。更多详情,请访问通义官网体验。
|
4天前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
12天前
|
机器学习/深度学习 人工智能
AI模型提早5年预警乳腺癌,MIT研究登Science获LeCun转发
【9月更文挑战第1天】麻省理工学院(MIT)研究人员开发的深度学习AI模型,在乳腺癌早期预警方面取得突破性进展,相比传统方法提前5年预警癌症,准确率超过90%。此成果不仅在医学界引起轰动,还获得了人工智能领域知名学者Yann LeCun的高度评价。尽管面临准确性和可解释性的挑战,但该研究展示了AI在医疗领域的巨大潜力,有望革新乳腺癌的早期筛查和诊断方式。论文详情见[链接]。
20 3
|
14天前
|
机器学习/深度学习 人工智能 Android开发
揭秘AI编程:从零开始构建你的第一个机器学习模型移动应用开发之旅:从新手到专家
【8月更文挑战第29天】本文将带你走进人工智能的奇妙世界,一起探索如何从零开始构建一个机器学习模型。我们将一步步解析整个过程,包括数据收集、预处理、模型选择、训练和测试等步骤,让你对AI编程有一个全面而深入的理解。无论你是AI初学者,还是有一定基础的开发者,都能在这篇文章中找到你需要的信息和启示。让我们一起开启这段激动人心的AI编程之旅吧! 【8月更文挑战第29天】在这篇文章中,我们将探索移动应用开发的奇妙世界。无论你是刚刚踏入这个领域的新手,还是已经有一定经验的开发者,这篇文章都将为你提供有价值的信息和指导。我们将从基础开始,逐步深入到更复杂的主题,包括移动操作系统的选择、开发工具的使用、
|
12天前
|
机器学习/深度学习 人工智能 自动驾驶
探索AI的魔法:用Python构建你的第一个机器学习模型
【8月更文挑战第31天】在这个数字时代,人工智能(AI)已经渗透到我们生活的方方面面。从智能助手到自动驾驶汽车,AI正在改变世界。本文将带你走进AI的世界,通过Python编程语言,一步步教你如何构建第一个机器学习模型。无论你是编程新手还是有经验的开发者,这篇文章都将为你打开新世界的大门,让你体验到创造智能程序的乐趣和成就感。所以,让我们一起开始这段激动人心的旅程吧!
|
机器学习/深度学习 算法 决策智能
【重磅开源】Facebook开源 Nevergrad:一种用于无梯度优化的开源工具
【重磅开源】Facebook开源 Nevergrad:一种用于无梯度优化的开源工具
159 0
|
缓存 数据可视化 测试技术
开源多年后,Facebook这个调试工具,再登Github热门榜
让许多工程师合作开发大型应用大多会面临一个挑战,通常没有一个人知道每个模块是如何工作的,这种技能会让开发新功能、调查Bug或优化性能变得困难,为了解决这个问题,Facebook创建并开源了Flipper,一个可扩展的跨平台的调试工具,用来调试 iOS 和 Android 应用。近日又双叒登上了Github热榜。
|
前端开发 JavaScript 测试技术
Facebook 开源可扩展文本编辑器 Lexical
Meta(原 Facebook)近日开源可扩展文本编辑器 Lexical,源代码托管在 GitHub 上采用 MIT 许可证。
518 0
Facebook 开源可扩展文本编辑器 Lexical