斯坦福大学发布吴恩达团队最新成果:利用 AI 帮助检测脑动脉瘤

简介: 放射科医师借助医学专家和计算机科学家开发的人工智能算法改进了脑动脉瘤的诊断。

雷锋网消息,北京时间6月8日,斯坦福大学官网发布了吴恩达团队的一项最新成果:放射科医师借助人工智能算法改进了脑动脉瘤的诊断——脑动脉瘤是大脑血管中的隆起物,可能会渗漏或破裂,可能导致中风、脑损伤或死亡。

TB1WNEAb9SD3KVjSZFKXXb10VXa.png

这项成果发表在了JAMA Network Open上。斯坦福大学统计学研究生、该论文的联合第一作者Allison Park说,“人们对机器学习在医学领域的实际作用有很多担忧。这项研究显示了人类如何在人工智能工具的帮助下参与诊断过程。”

据雷锋网(公众号:雷锋网)了解,该工具围绕一种名为HeadXNet的算法构建,可以提高临床医生正确识别动脉瘤的能力,其水平相当于在包含动脉瘤的100次扫描中发现另外六个动脉瘤,除此之外,它还能提高临床口译医生的共识。

TB18AAFb8Cw3KVjSZFlXXcJkFXa.gif

在脑部扫描中,HeadXNet使用透明的红色高光指示动脉瘤的位置。(图片来源:Allison Park)

虽然HeadXNet在这些实验中取得的成功很有价值,但研究团队提醒说,需要进一步调查,以便在实际临床部署之前评估AI工具的鲁棒性,因为不同医院拥有不同的设备硬件和成像协议,研究人员计划通过多中心合作解决这些问题。

医师在AI帮助下降低了漏诊率

对脑部扫描结果进行梳理、寻找动脉瘤意味着要浏览数百幅图像。动脉瘤有多种大小和形状,并以不同的角度向外膨胀——有些动脉瘤在一系列类似电影的图像中不过是一个光点。

“寻找动脉瘤是放射科医生最费力、最关键的任务之一,”放射学副教授、该论文的联合高级作者Kristen Yeom说,“考虑到复杂的神经血管解剖结构所带来的固有挑战,以及遗漏动脉瘤可能导致的致命后果,这促使我将计算机科学和视觉的进步成果应用于神经成像。”

Yeom将这个想法带到了斯坦福机器学习小组运行的AI for Healthcare Bootcamp,该小组由计算机科学副教授兼该论文的共同高级作者Andrew Ng(吴恩达)领导。小组的核心挑战是创建一种人工智能工具,可以准确地处理这些大量的3D图像并补充临床诊断实践。

TB1zOAyb21H3KVjSZFBXXbSMXXa.jpg

HeadXNet团队成员从左到右分别是:Andrew Ng,Kristen Yeom,Christopher Chute,Pranav Rajpurkar和Allison Park(图片来源:LA Cicero)

为了训练他们的算法,Yeom与Park和计算机科学研究生Christopher Chute合作,收集了611例头部CT血管造影中检测到的临床意义显着的动脉瘤。

“我们手工标记了每一个体素——相当于一个像素的3D图像——是否属于动脉瘤的一部分,”Chute说,“建立训练数据是一项相当艰巨的任务,数据量很大。”

经过训练之后,算法确定扫描的每个体素是否存在动脉瘤。

HeadXNet工具的最终结果是算法的结论以半透明的高亮显示在扫描的顶部。这种算法决策的表示形式,使得临床医生在没有HeadXNet输入的情况下仍然可以很容易地看到扫描结果。

“我们感兴趣的是,这些带有人工智能功能的扫描结果将如何提高临床医生的表现,”Pranav Rajpurkar说,他是一名计算机科学研究生,也是该论文的共同主要作者。“我们能够将动脉瘤的确切位置标记给临床医生看,而不仅仅是让算法说图像中包含动脉瘤。”

通过评估一组115个动脉瘤的脑部扫描,八名临床医生对HeadXNet进行了测试,一次是在HeadXNet的帮助下进行的,一次没有。

通过该工具,临床医生正确识别出了更多的动脉瘤,从而降低了“漏诊率”,而且医生之间更有可能达成一致。此外,HeadXNet并没有影响临床医生决定诊断所需的时间,也没有影响医生在患者没有动脉瘤的情况下正确识别扫描的能力。

并不只是人工智能的自动化

雷锋网了解到,HeadXNet核心的机器学习方法可能会被用来识别大脑内外的其他疾病。例如,Yeom设想未来的版本可以专注于加速动脉瘤破裂后的识别,从而在紧急情况下节省宝贵的时间。但是,将任何人工智能医疗工具与医院放射科的日常临床工作流程集成起来仍然存在相当大的障碍。

目前的扫描查看器并不是为配合深度学习而设计的,因此研究人员不得不开发定制的工具,将HeadXNet集成到扫描查看器中。

类似地,真实数据的变化——与算法所测试和训练的数据相反——可能会降低模型性能。如果该算法处理来自不同种类设备或成像协议的数据,或者处理不属于其原始训练的患者群体的数据,那么它可能不会像预期那样工作。

吴恩达说:“由于这些问题,我认为部署速度将会加快,不是单纯的人工智能自动化,而是人工智能和放射科医生的合作。我们仍有技术和非技术工作要做,但作为一个团队,我们将达到这一目标,人工智能与放射科医生的合作是最有希望的途径。”

目录
相关文章
|
16天前
|
机器学习/深度学习 人工智能 安全
AI加速疫苗研发:从十年磨一剑到一年出成果
AI加速疫苗研发:从十年磨一剑到一年出成果
143 27
|
4月前
|
人工智能 运维 Prometheus
别等系统“炸了”才慌!聊聊AI搞运维故障检测的那些真香时刻
别等系统“炸了”才慌!聊聊AI搞运维故障检测的那些真香时刻
163 0
|
6月前
|
人工智能 JSON 小程序
【一步步开发AI运动APP】七、自定义姿态动作识别检测——之规则配置检测
本文介绍了如何通过【一步步开发AI运动APP】系列博文,利用自定义姿态识别检测技术开发高性能的AI运动应用。核心内容包括:1) 自定义姿态识别检测,满足人像入镜、动作开始/停止等需求;2) Pose-Calc引擎详解,支持角度匹配、逻辑运算等多种人体分析规则;3) 姿态检测规则编写与执行方法;4) 完整示例展示左右手平举姿态检测。通过这些技术,开发者可轻松实现定制化运动分析功能。
|
6月前
|
存储 人工智能 安全
AI驱动的幼儿跌倒检测——视频安全系统的技术解析
幼儿跌倒检测系统基于AI视频技术,融合人体姿态识别与实时报警功能,为幼儿园安全管理提供智能化解决方案。系统通过YOLOv9、OpenPose等算法实现高精度跌倒检测(准确率达98%),结合LSTM时间序列分析减少误报,支持目标分类区分幼儿与成人,并具备事件存储、实时通知及开源部署优势。其高效、灵活、隐私合规的特点显著提升安全管理效率,助力优化园所运营。
203 0
AI驱动的幼儿跌倒检测——视频安全系统的技术解析
|
3月前
|
人工智能 JSON 开发工具
解决提示词痛点:用AI智能体自动检测矛盾、优化格式的完整方案
本文介绍了一种基于用户意图的提示词优化系统,利用多智能体架构实现自动化优化,提升少样本学习场景下的提示词质量与模型匹配度。系统通过专用智能体协同工作,识别并修复逻辑矛盾、格式不清及示例不一致等问题,结合Pydantic结构化数据模型与OpenAI评估框架,实现高效、可扩展的提示词优化流程。该方案显著减少了人工干预,增强了系统效率与输出一致性,适用于复杂研究任务与深度AI应用。
404 0
解决提示词痛点:用AI智能体自动检测矛盾、优化格式的完整方案
|
3月前
|
机器学习/深度学习 人工智能 数据可视化
鱼类AI数量检测代码分享
本代码基于深度学习实现鱼类数量检测,使用预训练的 Faster R-CNN 模型识别图像中的鱼类,并用边界框标注位置。支持单张图片检测、文件夹批量检测、结果可视化及统计分析。需安装 PyTorch、OpenCV 等依赖库。可微调模型提升鱼类检测精度。
|
5月前
|
人工智能 小程序 API
【一步步开发AI运动APP】九、自定义姿态动作识别检测——之关键点追踪
本文介绍了【一步步开发AI运动APP】系列中的关键点追踪技术。此前分享的系列博文助力开发者打造了多种AI健身场景的小程序,而新系列将聚焦性能更优的AI运动APP开发。文章重点讲解了“关键点位变化追踪”能力,适用于动态运动(如跳跃)分析,弥补了静态姿态检测的不足。通过`pose-calc`插件,开发者可设置关键点(如鼻子)、追踪方向(X或Y轴)及变化幅度。示例代码展示了如何在`uni-app`框架中使用`createPointTracker`实现关键点追踪,并结合人体识别结果完成动态分析。具体实现可参考文档与Demo示例。
|
6月前
|
SQL 数据采集 人工智能
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
241 12
|
6月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
177 8
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格
DeepMesh 是由清华大学和南洋理工大学联合开发的 3D 网格生成框架,基于强化学习和自回归变换器,能够生成高质量的 3D 网格,适用于虚拟环境构建、动态内容生成、角色动画等多种场景。
512 4
DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格

热门文章

最新文章