9 大主题卷积神经网络(CNN)的 PyTorch 实现

简介: 9 大主题卷积神经网络(CNN)的 PyTorch 实现

大家还记得这张图吗?


image.png

之前,红色石头发文介绍过一份很不错的资源:


52 个深度学习目标检测模型汇总,论文、源码一应俱全!


深度系统介绍了 52 个目标检测模型,纵观 2013 年到 2020 年,从最早的 R-CNN、OverFeat 到后来的 SSD、YOLO v3 再到去年的 M2Det,新模型层出不穷,性能也越来越好!


上文聚焦于源码和论文,对于各种卷积神经网络模型的实现,本文将介绍它们的 PyTorch 实现,非常有用!


这份资源已经开源在了 GitHub 上,链接如下:


https://github.com/shanglianlm0525/PyTorch-Networks


先来个总结介绍,该系列的卷积神经网络实现包含了 9 大主题,目录如下:


1. 典型网络

2. 轻量级网络

3. 目标检测网络

4. 语义分割网络

5. 实例分割网络

6. 人脸检测和识别网络

7. 人体姿态识别网络

8. 注意力机制网络

9. 人像分割网络


下面具体来看一下:


1. 典型网络(Classical network)


典型的卷积神经网络包括:AlexNet、VGG、ResNet、InceptionV1、InceptionV2、InceptionV3、InceptionV4、Inception-ResNet。


image.png

以 AlexNet 网络为例,AlexNet 是 2012 年 ImageNet 竞赛冠军获得者 Hinton 和他的学生 Alex Krizhevsky 设计的。AlexNet 中包含了几个比较新的技术点,也首次在 CNN 中成功应用了 ReLU、Dropout 和 LRN 等 Trick。同时 AlexNet 也使用了 GPU 进行运算加速。


image.png

AlexNet 网络结构的 PyTorch 实现方式如下:

import torch
import torch.nn as nn
def Conv3x3BNReLU(in_channels,out_channels,stride,padding=1):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU6(inplace=True)
        )
def Conv1x1BNReLU(in_channels,out_channels):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(out_channels),
            nn.ReLU6(inplace=True)
        )
def ConvBNReLU(in_channels,out_channels,kernel_size,stride,padding=1):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
            nn.BatchNorm2d(out_channels),
            nn.ReLU6(inplace=True)
        )
def ConvBN(in_channels,out_channels,kernel_size,stride,padding=1):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
            nn.BatchNorm2d(out_channels)
        )
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ResidualBlock, self).__init__()
        mid_channels = out_channels//2
        self.bottleneck = nn.Sequential(
            ConvBNReLU(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1),
            ConvBNReLU(in_channels=mid_channels, out_channels=mid_channels, kernel_size=3, stride=1, padding=1),
            ConvBNReLU(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1),
        )
        self.shortcut = ConvBNReLU(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1)
    def forward(self, x):
        out = self.bottleneck(x)
        return out+self.shortcut(x)


2.轻量级网络(Lightweight)


轻量级网络包括:GhostNet、MobileNets、MobileNetV2、MobileNetV3、ShuffleNet、ShuffleNet V2、SqueezeNet Xception MixNet GhostNet。


2.jpg


以 GhostNet 为例,同样精度,速度和计算量均少于此前 SOTA 算法。GhostNet 的核心是 Ghost 模块,与普通卷积神经网络相比,在不更改输出特征图大小的情况下,其所需的参数总数和计算复杂度均已降低,而且即插即用。


image.png


GhostNet 网络结构的 PyTorch 实现方式如下:


https://github.com/shanglianlm0525/PyTorch-Networks/blob/master/Lightweight/GhostNet.py


3. 目标检测网络(ObjectDetection)


目标检测网络包括:SSD、YOLO、YOLOv2、YOLOv3、FCOS、FPN、RetinaNet Objects as Points、FSAF、CenterNet FoveaBox。


4.jpg5.jpg6.jpg

以 YOLO 系列为例,YOLO(You Only Look Once)是一种基于深度神经网络的对象识别和定位算法,其最大的特点是运行速度很快,可以用于实时系统。目前 YOLOv3 应用比较多。


image.png

YOLOV3 网络结构的 PyTorch 实现方式如下:


https://github.com/shanglianlm0525/PyTorch-Networks/blob/master/ObjectDetection/YOLOv3.py


4. 语义分割网络(SemanticSegmentation)


语义分割网络包括:FCN、Fast-SCNN、LEDNet、LRNNet、FisheyeMODNet。


以 FCN 为例,FCN 诞生于 2014 的语义分割模型先驱,主要贡献为在语义分割问题中推广使用端对端卷积神经网络,使用反卷积进行上采样。FCN 模型非常简单,里面全部是由卷积构成的,所以被称为全卷积网络,同时由于全卷积的特殊形式,因此可以接受任意大小的输入。


image.png


FCN 网络结构的 PyTorch 实现方式如下:


https://github.com/shanglianlm0525/PyTorch-Networks/blob/master/SemanticSegmentation/FCN.py


5. 实例分割网络(InstanceSegmentation)


实例分割网络包括:PolarMask。


image.png


6. 人脸检测和识别网络(commit VarGFaceNet)


人脸检测和识别网络包括:FaceBoxes、LFFD、VarGFaceNet。


image.png


7. 人体姿态识别网络(HumanPoseEstimation)


人体姿态识别网络包括:Stacked Hourglass、Networks Simple Baselines、LPN。


image.png

8. 注意力机制网络


注意力机制网络包括:SE Net、scSE、NL Net、GCNet、CBAM。


image.png


9. 人像分割网络(PortraitSegmentation)


人像分割网络包括:SINet。


综上,该 GitHub 开源项目展示了近些年来主流的 9 大类卷积神经网络,总共包含了几十种具体的网络结构。其中每个网络结构都有 PyTorch 实现方式。还是很不错的。


最后再放上 GitHub 开源地址:


https://github.com/shanglianlm0525/PyTorch-Networks

相关文章
|
3月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
4月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
477 11
|
4月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
124 1
|
4月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
205 0
|
4月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
705 0
|
4月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
314 0
|
6月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
353 7
|
7月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
7月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容包含时间序列预测算法的相关资料,涵盖以下几个方面:1. 算法运行效果预览(无水印);2. 运行环境为Matlab 2022a/2024b;3. 提供部分核心程序,完整版含中文注释及操作视频;4. 理论概述:结合时间卷积神经网络(TCN)与鲸鱼优化算法(WOA),优化TCN超参数以提升非线性时间序列预测性能。通过因果卷积层与残差连接构建TCN模型,并用WOA调整卷积核大小、层数等参数,实现精准预测。适用于金融、气象等领域决策支持。
|
7月前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。

热门文章

最新文章