DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释)、案例应用之详细攻略(三)

简介: DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释)、案例应用之详细攻略

3、反向传播(backpropagation)算法

image.png

深度学习模型,采用梯度下降和误差反向传播进行模型参数更新。


随机初始化网络权重

前向传播计算网络输出

计算误差

后向传播误差到前一层; 计算梯度

前面层更新权重和偏置参数

从步骤2重复该过程最小化误差直到损失收敛


4、前向传播计算

image.png

image.png



使用损失函数比较实际输出和期望输出

image.png



计算图(Computation Graph):计算过程可以表示成有向图的形式。

前向计算过程:

计算各计算结点的导数。


5、反向传播误差信号

image.png

后向传播误差到前面的层,传播的误差用来计算损失函数的梯度。

计算损失函数?对各参数的梯度(偏导数)

输出层连接权重的梯度

隐藏层连接权重的梯度

偏置项的梯度


反向传播(backpropagation)

任何导数均可通过将相应连接边上的导数连乘得到。

若求导涉及多条路径,需要将每条路径上的导数连乘起来,然后再求和。



6、更新参数

image.png

得到梯度以后,就可以进行更新参数。


链式法则


链式法则简介


      链式法chain rule,属于微积分领域,是微积分中的求导法则,用于求一个复合函数的导数,是在微积分的求导运算中一种常用的方法。复合函数的导数将是构成复合这有限个函数在相应点的 导数的乘积,就像锁链一样一环套一环,故称链式法则。


image.png


      这个结论可推广到任意有限个函数复合到情形,于是复合函数的导数将是构成复合这有限个函数在相应点的 导数的乘积,就像锁链一样一环套一环,故称链式法则。



1、链式法则与复合函数


        链式法则是关于复合函数的导数的性质:如果某个函数由复合函数表示,则该复合函数的导数可以用构成复合函数的各个函数的导数的乘积表示。

        数学式表示

          image.png                                      



2、链式法则和计算图


       其中“**2”节点表示平方运算,沿着与正方向相反的方向,乘上局部导数后传递。反向传播的计算顺序是,先将节点的输入信号乘以节点的局部导数(偏导数),然后再传递给下一个节点。


image.png


反向传播是基于链式法则的。

(1)、根据计算图的反向传播的结果,dz/dx = 2(x + y)


image.png


(2)、乘法的反向传播:左图是正向传播,右图是反向传播。


            image.png

       因为乘法的反向传播会乘以输入信号的翻转值,所以各自可按1.3 × 5 =6.5、1.3 × 10 = 13 计算。另外,加法的反向传播只是将上游的值传给下游,并不需要正向传播的输入信号。但是,乘法的反向传播需要正向传播时的输入信号值。因此,实现乘法节点的反向传播时,要保存正向传播的输入信号。


(3)、购买苹果的反向传播的例子:这个问题相当于求“支付金额关于苹果的价格的导数”“支付金额关于苹果的个数的导数”“支付金额关于消费税的导数”。


image.png




链式法则使用


1、求导案例

image.png

相关文章
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
46 3
|
3天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
23天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
26 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
74 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
38 1
|
2月前
|
监控 算法 数据挖掘
HyperLogLog算法有哪些应用场景呢
【10月更文挑战第19天】HyperLogLog算法有哪些应用场景呢
17 0
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。