DL之HNN:Hopfield神经网络(HNN之DHNN、CHNN)的相关论文、简介、使用案例之详细攻略(一)

简介: DL之HNN:Hopfield神经网络(HNN之DHNN、CHNN)的相关论文、简介、使用案例之详细攻略

HNN


      1982年,美国加州工学院生物物理学家约翰·霍普菲尔德Hopfield开创性地提出了一种新型的连续时间递归神经网络模型(原始的Hopfield模型)。1982年,约翰·霍普菲尔德认识到如果这种连接是对称的,那就存在一个全局的能量函数。整个网络每个二进制单元的“配置”都对应了能量的多与少,二进制单元的阈值决策规则会让网络的配置朝着能量函数最小化的方向进行。 使用这种类型的计算的一种简洁方法是使用存储器作为神经网络的能量最小值,使用能量极小值的记忆提供了一个内存关联存储器(CAM) 。


       Hopfield神经网络HNN(Hopfiled Neural Network)是一种结合存储系统和二元系统的神经网络。它保证了向局部极小的收敛,但收敛到错误的局部极小值,而非全局极小的情况也可能发生。Hopfield神经网络也提供了模拟人类记忆的模型。


       Hopfield神经网络是一种循环神经网络,每个节点的输出都是其他节点的输入(但不存在自反馈),下边的T代表阈值(类似NN的偏置)。Hopfield网络是一种结合存储系统和二元系统的神经网络。它保证了向局部极小的收敛,但收敛到错误的局部极小值(local minimum),而非全局极小(global minimum)的情况也可能发生。Hopfield网络也提供了模拟人类记忆的模型。



1、Hopfield神经网络应用


        Hopfield神经网络早期应用包括按内容寻址存储器,模数转换、优化组合计算、解决TSP问题等。具有代表意义的是解决TSP问题,1985年Hopfield和Tank用Hopfield网络求解N=30的TSP问题,从而创建了神经网络优化的新途径。除此之外,Hopfield 神经网络在人工智能之机器学习、联想记忆、模式识别、优化计算、VLSI和光学设备的并行实现等方面有着广泛应用。



一、HNN之DHNN


1、DHNN


image.png


DHNN—离散型Hopfield神经网络:Hopfield最早提出的网络是二值神经网络,各神经元的激励函数为阶跃函数或双极值函数,神经元的输入、输出只取{0,1}或者{ -1,1},所以也称为离散型Hopfield神经网络DHNN(Discrete Hopfiled Neural Network)。在DHNN中,所采用的神经元是二值神经元;因此,所输出的离散值1和0或者1和-1分别表示神经元处于激活状态和抑制状态。

       离散Hopfield神经网络DHNN是一个单层网络,有n个神经元节点,每个神经元的输出均接到其它神经元的输入。各节点没有自反馈。每个节点都可处于一种可能的状态(1或-1),即当该神经元所受的刺激超过其阀值时,神经元就处于一种状态(比如1),否则神经元就始终处于另一状态(比如-1)。


DHNN的特点:


DHNN是一种多输入、含有阈值的二值非线性动态系统—能量函数。在动态系统中,平衡稳定状态可以理解为系统某种形式的能量函数(energy function)在系统运行过程中,其能量不断减少,最后处于最小值。

DHNN稳定的充分条件是权重系数矩阵W是一个对称矩阵且对角线元素为0:如果DHNN的权系数矩阵W是一个对称矩阵,并且对角线元素为0,则这个网络是稳定的。W是一个对称矩阵仅是充分条件,不是必要条件。

DHNN的类人类的联想记忆功能:DHNN一个重要功能是可以用于联想记忆,即联想存储器,这是人类的智能特点之一。

DHNN实现联想记忆过程分为两个阶段:

1)、学习记忆阶段: 设计者通过某一设计方法确定一组合适的权值,使DHNN记忆期望的稳定平衡点。

2)、联想回忆阶段: DHNN的工作过程。



DHNN局限性:

image.png

DHNN记忆容量的有限性—无混沌状态:由于网络状态是有限的,不可能出现混沌状态。

DHNN的伪稳定点的联想与记忆;

DHNN对于近似样本容易出错:当记忆样本较接近时,网络不能始终回忆出正确的记忆等;

DHNN平衡稳定点不可以任意设置:也没有一个通用的方式来事先知道平衡稳定点。



激活函数:DHNN中采用的是sgn函数

阈值Tj:以前是加偏置,但现在是减阈值,其实思想是一样的。t是迭代次数。


image.png

image.png

image.png

image.png






相关文章
|
1月前
|
机器学习/深度学习 资源调度 算法框架/工具
AI-ANNE: 将神经网络迁移到微控制器的深度探索——论文阅读
AI-ANNE框架探索将深度学习模型迁移至微控制器的可行路径,基于MicroPython在Raspberry Pi Pico上实现神经网络核心组件,支持本地化推理,推动TinyML在边缘设备中的应用。
122 10
|
1月前
|
机器学习/深度学习 边缘计算 算法
SEENN: 迈向时间脉冲早退神经网络——论文阅读
SEENN提出一种时间脉冲早退神经网络,通过自适应调整每个样本的推理时间步数,有效平衡脉冲神经网络的准确率与计算效率。该方法基于置信度判断或强化学习策略,在保证高精度的同时显著降低能耗与延迟,适用于边缘计算与实时处理场景。
124 13
|
1月前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
310 1
|
5月前
|
人工智能 算法 异构计算
阿里云基础网络技术5篇论文入选全球网络顶会NSDI
近日,阿里云基础网络技术5篇论文被NSDI 2025主会录用。研究涵盖大模型训练网络故障诊断、仿真、容器网络性能诊断、CDN流控算法智能选择及GPU解耦推理优化等领域。其中,《Evolution of Aegis》提出增强现有体系+训练过程感知的两阶段演进路线,显著降低故障诊断耗时;《SimAI》实现高精度大模型集群训练模拟;《Learning Production-Optimized Congestion Control Selection》通过AliCCS优化CDN拥塞控制;《Prism》设计全新GPU解耦推理方案;《ScalaCN》解决容器化RDMA场景性能问题。
230 7
阿里云基础网络技术5篇论文入选全球网络顶会NSDI
|
9月前
|
SQL Cloud Native API
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
NSDI‘24于4月16-18日在美国加州圣塔克拉拉市举办,汇聚全球网络系统领域的专家。阿里云飞天洛神云网络的两篇论文入选,标志着其创新能力获广泛认可。其中,《Poseidon: A Consolidated Virtual Network Controller that Manages Millions of Tenants via Config Tree》介绍了波塞冬平台,该平台通过统一控制器架构、高性能配置计算引擎等技术,实现了对超大规模租户和设备的高效管理,显著提升了云网络性能与弹性。实验结果显示,波塞冬在启用EIP时的完成时间比Top 5厂商分别快1.8至55倍和2.6至4.8倍。
992 146
|
7月前
|
SQL 缓存 Cloud Native
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
262 63
|
5月前
|
canal 负载均衡 智能网卡
阿里云洛神云网络论文入选SIGCOMM'25主会,相关实习生岗位火热招聘中
阿里云飞天洛神云网络的两项核心技术Nezha和Hermes被SIGCOMM 2025主会录用。Nezha通过计算网络解耦实现vSwitch池化架构,大幅提升网络性能;Hermes则提出用户态引导I/O事件通知框架,优化L7负载均衡。这两项技术突破解决了云网络中的关键问题,展现了阿里云在网络领域的领先实力。
943 2
|
6月前
|
人工智能 运维 监控
阿里云携手神州灵云打造云内网络性能监测标杆 斩获中国信通院高质量数字化转型十大案例——金保信“云内网络可观测”方案树立云原生运维新范式
2025年,金保信社保卡有限公司联合阿里云与神州灵云申报的《云内网络性能可观测解决方案》入选高质量数字化转型典型案例。该方案基于阿里云飞天企业版,融合云原生引流技术和流量“染色”专利,解决云内运维难题,实现主动预警和精准观测,将故障排查时间从数小时缩短至15分钟,助力企业降本增效,形成可跨行业复制的数字化转型方法论。
321 6
|
7月前
|
前端开发 Java 关系型数据库
基于ssm的网络直播带货管理系统,附源码+数据库+论文
该项目为网络直播带货网站,包含管理员和用户两个角色。管理员可进行主页、个人中心、用户管理、商品分类与信息管理、系统及订单管理;用户可浏览主页、管理个人中心、收藏和订单。系统基于Java开发,采用B/S架构,前端使用Vue、JSP等技术,后端为SSM框架,数据库为MySQL。项目运行环境为Windows,支持JDK8、Tomcat8.5。提供演示视频和详细文档截图。
200 10

热门文章

最新文章