深度学习500问——Chapter05: 卷积神经网络(CNN)(2)

简介: 深度学习500问——Chapter05: 卷积神经网络(CNN)(2)

5.6 有哪些池化方法

池化操作通常也叫做子采样(Subsampling)或降采样(Downsampling),在构建卷积神经网络时,往往会用在卷积层之后,通过池化来降低卷积层输出的特征维度,有效减少网络参数的同时还可以防止过拟合现象。池化操作可以降低图像维度的原因,本质上是因为图像具有一种“静态性”的属性,这个意思是说在一个图像区域有用的特征极有可能在另一个区域同样有用。因此,为了描述一个大的图像,很直观的想法就是对不同位置的特征进行聚合统计。例如,可以计算图像在固定区域特征上的平均值(或最大值)来代表这个区域的特征。

表5.6 池化分类

池化类型 示意图 作用
一般池化(General Pooling) 通常包括最大池化(Max Pooling)和平均池化(Mean Pooling)。以最大池化为例,池化范围

(2×2)和滑窗步长(stride=2)相同,仅提取一次相同区域的范化特征。

重叠池化(Overlapping Pooling) 与一般池化操作相同,但是池化范围

Psize与滑窗步长stride关系为Psize>stride,同一区域内的像素特征可以参与多次滑窗提取,得到的特征表达能力更强,但计算量更大。

空间金字塔池化^*(Spatial Pyramid Pooling) 在进行多尺度目标的训练时,卷积层允许输入的图像特征尺度是可变的,紧接的池化层若采用一般的池化方法会使得不同的输入特征输出相应变

化尺度的特征,而卷积神经网络中最后的全连接层则无法对可变尺度进行运算,因此需要对不同尺度的输出特征采样到相同输出尺度。

SPPNet[3]就引入了空间池化的组合,对不同输出尺度采用不同的滑窗大小和步长以确保输出尺度相同(winsize=⌈inout⌉;stride=⌊inout⌋;),同时用如金字塔式叠加的多种池化尺度组合,以提取更加丰富的图像特征。常用于多尺度训练和目标检测中的区域提议网络(Region Proposal Network)的兴趣区域(Region of Interest)提取。

5.7 1x1卷积作用

NIN(Network in Network)[4]是第一篇探索卷积核的论文,这篇论文通过在卷积层中使用MLP替代传统线性的卷积核,使单层卷积层内具有非线性映射的能力,也因其网络结构中嵌套MLP子网络而得名NIN。NIN对不同通道的特征整合到MLP自网络中,让不同通道的特征能够交互整合,使通道之间的信息得以流通,其中的MLP子网络恰恰可以用的卷积进行代替。GoogLeNet[5]则采用 卷积核来减少模型的参数量。在原始版本的Inception模块中,由于每一层网络采用了更多的卷积核,大大增加了模型的参数量。此时在每一个较大卷积核的卷积层前引入 卷积,可以通过分离通道与宽高卷积来减少模型参数量。

以图5.2为例,在不考虑参数偏置项的情况下,若输入和输出的通道数为 ,则左半边网络模块所需的参数为:(1×1+3×3+5×5+0)×C1×C1=8960 假定右半边网络模块采用的 卷积通道数为C2=8(满足 ),则右半部分的网络结构所需参数量为: ,可以在不改变模型表达能力的前提下大大减少所使用的参数量。

图5.2 Inception模块

综上所述, 卷积的作用主要为以下两点:

  • 实现信息的跨通道交互和整合;
  • 对卷积核通道数进行降维和升维,减小参数量。

5.8 卷积层和池化层有什么区别

卷积层和池化层在结构上具有一定的相似性,都是对感受域内的特征进行提取,并且根据步长设置获取到不同维度的输出,但是其内在操作是有本质区别的,如表5.7所示。

卷积层 池化层
结构 零填充时输出维度不变,而通道数改变 通常特征维度会降低,通道数不变
稳定性 输入特征发生细微改变时,输出结果会改变 感受域内的细微变化不影响输出结果
作用 感受域内提取局部关联特征 感受域内提取泛化特征,降低维度
参数量 与卷积核尺寸、卷积核个数相关 不引入额外参

5.9 卷积核是否一定越大越好

在早期的卷积神经网络中(如LeNet-5、AlexNet),用到了一些较大的卷积核(11×11),受限于当时的计算能力和模型结构的设计,无法将网络叠加的很深,因此卷积网络中的卷积层需要设置较大的卷积核以获取更大的感受域。但是这种大卷积核反而会导致计算量大幅增加,不利于训练更深层的模型,相应的计算性能也会降低。后来的卷积神经网络(VGG、GoogLeNet等),发现通过堆叠2个卷积核可以获得与的卷积核相同的感受野,同时参数量会更少(),卷积核被广泛应用于许多卷积神经网络中。因此可以认为,在大多数情况下通过堆叠较小的卷积核比直接采用单个更大的卷积核会更加有效。

但是,这并不是表示更大的卷积核就没有作用,在某些领域应用卷积神经网络时仍然可以采用较大的卷积核。譬如在自然语言处理领域,由于文本内容不像图像数据可以对特征进行很深层的抽象,往往在该领域的特征提取只需要较浅层的神经网络即可。在将卷积神经网络应用在自然语言处理领域时,通常都是较为浅层的卷积层组成,但是文本特征有时又需要有较广的感受域让模型能够组合更多的特征(如词组和字符),此时直接采用较大的卷积核将是更好的选择。

综上所述,卷积核的大小并没有绝对的优劣,需要视具体的应用场景而定,但是极大和极小的卷积核都是不合适的,单独的极小卷积核只能用作分离卷积而不能对输入的原始特征进行有效的组合,极大的卷积核通常会组合过多的无意义特征从而浪费了大量的计算资源。

5.10 每层卷积是否只能用一种尺寸的卷积核

经典的神经网络一般都属于层叠式网络,每层仅用一个尺寸的卷积核,如VGG结构中使用了大量的 卷积层。事实上,同一层特征图可以分别使用多个不同尺寸的卷积核,以获得不同尺度的特征,再把这些特征结合起来,得到的特征往往比使用单一卷积核的要好,如GoogLeNet、Inception系列的网络,均是每层使用了多个卷积核的结构。如图5.3所示,输入的特征在同一层分别经过 三种不同尺寸的卷积核,再将分别得到的特征进行整合,得到的新特征可以看作不同感受域提取的特征组合,相比于单一卷积核会有更强的表达能力。


5.11 怎样才能减少卷积层参数量

  • 减少卷积层参数量的方法可以简要地归为以下几点:
  • 使用堆叠小卷积核代替大卷积核:VGG网络中2个 的卷积核可以代替一个 的卷积核。
  • 使用分离卷积操作:将原本 的卷积操作分离为K×K×11×1×C1的两部分操作。
  • 添加 的卷积操作:与分离卷积类似,但是通道数可变,在 卷积前添加 的卷积核(满足 )。
  • 在卷积层前使用池化操作:池化可以降低卷积层的输入特征维度。

5.12 在进行卷积操作时,必须同时考虑通道和区域吗

标准卷积中,采用区域与通道同时处理的操作,如下图所示:

这样做可以简化卷积层内部的结构,每一个输出的特征像素都由所有通道的同一个区域提取而来。

但是这种方式缺乏灵活性,并且在深层的网络结构中使得运算变得相对低效,更为灵活的方式是使区域和通道的卷积分离开来,通道分离(深度分离)卷积网络由此诞生。如下图所示,Xception网络可解决上述问题。

我们首先对每一个通道进行各自的卷积操作,有多少个通道就有多少个过滤器。得到新的通道特征矩阵之后,再对这批通道特征进行标准的 跨通道卷积操作。

5.13 采用宽卷积的好处有什么

宽卷积对应是窄卷积,实际上并不是卷积操作的类型,指的是卷积过程中的填充方法,对应的是“SAME”填充和“VALID”填充。“SAME”填充通常采用零填充的方式对卷积核不满足整除条件的输入特征进行补全,以使卷积层的输出维度保持与输入特征维度一致;“VALID”填充的方式则相反,实际并不进行任何填充,在输入特征边缘位置若不足以进行卷积操作,则对边缘信息进行舍弃,因此在步长为1的情况下该填充方式的卷积层输出特征维度可能会略小于输入特征的维度。此外,由于前一种方式通过补零来进行完整的卷积操作,可以有效地保留原始的输入特征信息。

比如下图左部分的窄卷积。注意到越在边缘的位置被卷积的次数越少。宽卷积可以看作在卷积之前在边缘用0补充,常见的有两种情况,一个是全补充,如下图右部分,这样输出大于输入的维度。另一种常用的方法是补充一部分0值,使得输出核输入的维度一致。


目录
相关文章
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
1月前
|
机器学习/深度学习 人工智能 算法
深度解析:基于卷积神经网络的宠物识别
宠物识别技术随着饲养规模扩大而兴起,传统手段存在局限性,基于卷积神经网络的宠物识别技术应运而生。快瞳AI通过优化MobileNet-SSD架构、多尺度特征融合及动态网络剪枝等技术,实现高效精准识别。其在智能家居、宠物医疗和防走失领域展现广泛应用前景,为宠物管理带来智能化解决方案,推动行业迈向新高度。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
11天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容涵盖基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测算法。完整程序运行效果无水印,适用于Matlab2022a版本。核心代码配有详细中文注释及操作视频。理论部分阐述了传统方法(如ARIMA)在非线性预测中的局限性,以及TCN结合PSO优化超参数的优势。模型由因果卷积层和残差连接组成,通过迭代训练与评估选择最优超参数,最终实现高精度预测,广泛应用于金融、气象等领域。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
2月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
71 8
|
3月前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
3月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。

热门文章

最新文章