阿里云机器学习模型在线服务自定义Processor部署PMML模型(二)

简介: 阿里云机器学习模型在线服务自定义Processor部署PMML模型(一)中介绍了使用EASCMD搭建环境,进行自定义processor的部署,这里介绍使用阿里云提供的镜像进行模型的在线部署,并通过Java SDK演示模型的在线调用。

Step By Step

1、直接使用镜像获取Python环境
2、容器配置
3、镜像构建与上传
4、基于构建镜像创建EAS服务
5、Java SDK调用服务


一、直接使用镜像获取Python环境
  • 1.1 如果未安装Docker,请参考链接先安装Docker环境

图片.png

  • 1.2 run命令进入容器
sudo docker run -ti registry.cn-shanghai.aliyuncs.com/eas/eas-python-base-image:py3.6-allspark-0.8
二、容器配置
  • 2.1 删除app.py,下载pmml文件

图片.png

  • 2.2 docker中安装:sklearn-pmml-model
ENV/bin/pip install sklearn-pmml-model

图片.png

三、镜像构建与上传
  • 3.1 登陆阿里云镜像服务
sudo docker login --username=gts mubu**.cn-shanghai.cr.aliyuncs.com

图片.png

  • 3.2 获取容器ID

图片.png

  • 3.3 基于容器生成镜像
sudo docker commit d52f5f01607b mubu .cn-shanghai.cr.aliyuncs.com/taro/eas_pmml:v2

图片.png

  • 3.4 提交镜像到阿里云镜像仓库
sudo docker push mubu .cn-shanghai.cr.aliyuncs.com/taro/eas_pmml:v2

图片.png

  • 3.5 镜像仓库查看

图片.png

  • 3.6 设置镜像公开匿名拉取权限

图片.png

四、基于构建镜像创建EAS服务
  • 4.1 app.py代码
# -*- coding: utf-8 -*-
import allspark
import pandas as pd
import numpy as np
from sklearn_pmml_model.ensemble import PMMLForestClassifier

class MyProcessor(allspark.BaseProcessor):
    """ MyProcessor is a example
        you can send mesage like this to predict
        curl -v http://127.0.0.1:8080/api/predict/service_name -d '2.1 105'
    """

    def initialize(self):
        """ load module, executed once at the start of the service
         do service intialization and load models in this function.
        """
        self.model = PMMLForestClassifier(pmml="randomForest.pmml")

    def pre_proccess(self, data):
        """ data format pre process
        """
        x, y, z, w = data.split(b' ')
        return float(x), float(y), float(z), float(w)

    def post_process(self, data):
        """ proccess after process
        """
        return str(data).encode()

    def process(self, data):
        """ process the request data
        """
        x, y, z, w = self.pre_proccess(data)
        df = pd.DataFrame([[x, y, z, w]],columns=['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)'])
        result  = self.model.predict(df)
        print(result)
        return self.post_process(result), 200

if __name__ == '__main__':
    # paramter worker_threads indicates concurrency of processing
    runner = MyProcessor(worker_threads=10)
    runner.run()
  • 4.2 上传app.py到阿里云OSS存储,并设置权限为公共可读,获取下载地址

图片.png

  • 4.3 app.json部署文件
{
  "name": "taro_docker_v2",
  "processor_entry": "./app.py",
  "processor_type": "python",
  "processor_path": "https://taro******.oss-cn-shanghai.aliyuncs.com/eas_python_app/app.py",
  "data_image": "mubu******.cn-shanghai.cr.aliyuncs.com/taro/eas_pmml:v1",
  "metadata": {
    "instance": 1,
     "memory": 2000,
     "cpu": 1
    }
}
  • 4.4 EASCMD部署服务
./eascmd64 create demo2.json

图片.png

五、Java SDK调用服务
  • 5.1 控制台查看部署服务

图片.png

  • 5.2 POSTMAN调用测试

图片.png

图片.png

  • 5.3 pom.xml
        <dependency>
            <groupId>com.squareup.okhttp</groupId>
            <artifactId>okhttp</artifactId>
            <version>2.7.3</version>
        </dependency>
  • 5.4 Java Code
import com.squareup.okhttp.*;
import java.io.IOException;

public class EASDEMO {

    public static void main(String[] args) throws IOException {
        OkHttpClient client = new OkHttpClient();

        MediaType mediaType = MediaType.parse("application/octet-stream");
        RequestBody body = RequestBody.create(mediaType, "5.6 3.0 4.1 1.3");
        Request request = new Request.Builder()
                .url("http://172*********.cn-shanghai.pai-eas.aliyuncs.com/api/predict/taro_docker_v2")
                .post(body)
                .addHeader("authorization", "MjE2ZDNkMj*********")
                .build();

        Response response = client.newCall(request).execute();
        System.out.println(response.body().string());

    }
}
  • 5.5 测试结果

图片.png


更多参考

安装 Docker
阿里云机器学习模型在线服务自定义Processor部署PMML模型(一)
使用Python开发自定义Processor
eascmd客户端工具

相关文章
|
10天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
7天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
24 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
11天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
33 1
|
20天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
59 1
|
23天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
29天前
|
机器人
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
1024 云上见 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建 “文旅领域知识问答机器人” 领 200个 精美计时器等你领
73 2
|
16天前
|
机器学习/深度学习 算法
探索机器学习模型的可解释性
【10月更文挑战第29天】在机器学习领域,一个关键议题是模型的可解释性。本文将通过简单易懂的语言和实例,探讨如何理解和评估机器学习模型的决策过程。我们将从基础概念入手,逐步深入到更复杂的技术手段,旨在为非专业人士提供一扇洞悉机器学习黑箱的窗口。
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
239 14
|
6月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
116 1
|
6月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

热门文章

最新文章