阿里云机器学习模型在线服务自定义Processor部署PMML模型(二)

简介: 阿里云机器学习模型在线服务自定义Processor部署PMML模型(一)中介绍了使用EASCMD搭建环境,进行自定义processor的部署,这里介绍使用阿里云提供的镜像进行模型的在线部署,并通过Java SDK演示模型的在线调用。

Step By Step

1、直接使用镜像获取Python环境
2、容器配置
3、镜像构建与上传
4、基于构建镜像创建EAS服务
5、Java SDK调用服务


一、直接使用镜像获取Python环境
  • 1.1 如果未安装Docker,请参考链接先安装Docker环境

图片.png

  • 1.2 run命令进入容器
sudo docker run -ti registry.cn-shanghai.aliyuncs.com/eas/eas-python-base-image:py3.6-allspark-0.8
二、容器配置
  • 2.1 删除app.py,下载pmml文件

图片.png

  • 2.2 docker中安装:sklearn-pmml-model
ENV/bin/pip install sklearn-pmml-model

图片.png

三、镜像构建与上传
  • 3.1 登陆阿里云镜像服务
sudo docker login --username=gts mubu**.cn-shanghai.cr.aliyuncs.com

图片.png

  • 3.2 获取容器ID

图片.png

  • 3.3 基于容器生成镜像
sudo docker commit d52f5f01607b mubu .cn-shanghai.cr.aliyuncs.com/taro/eas_pmml:v2

图片.png

  • 3.4 提交镜像到阿里云镜像仓库
sudo docker push mubu .cn-shanghai.cr.aliyuncs.com/taro/eas_pmml:v2

图片.png

  • 3.5 镜像仓库查看

图片.png

  • 3.6 设置镜像公开匿名拉取权限

图片.png

四、基于构建镜像创建EAS服务
  • 4.1 app.py代码
# -*- coding: utf-8 -*-
import allspark
import pandas as pd
import numpy as np
from sklearn_pmml_model.ensemble import PMMLForestClassifier

class MyProcessor(allspark.BaseProcessor):
    """ MyProcessor is a example
        you can send mesage like this to predict
        curl -v http://127.0.0.1:8080/api/predict/service_name -d '2.1 105'
    """

    def initialize(self):
        """ load module, executed once at the start of the service
         do service intialization and load models in this function.
        """
        self.model = PMMLForestClassifier(pmml="randomForest.pmml")

    def pre_proccess(self, data):
        """ data format pre process
        """
        x, y, z, w = data.split(b' ')
        return float(x), float(y), float(z), float(w)

    def post_process(self, data):
        """ proccess after process
        """
        return str(data).encode()

    def process(self, data):
        """ process the request data
        """
        x, y, z, w = self.pre_proccess(data)
        df = pd.DataFrame([[x, y, z, w]],columns=['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)'])
        result  = self.model.predict(df)
        print(result)
        return self.post_process(result), 200

if __name__ == '__main__':
    # paramter worker_threads indicates concurrency of processing
    runner = MyProcessor(worker_threads=10)
    runner.run()
  • 4.2 上传app.py到阿里云OSS存储,并设置权限为公共可读,获取下载地址

图片.png

  • 4.3 app.json部署文件
{
  "name": "taro_docker_v2",
  "processor_entry": "./app.py",
  "processor_type": "python",
  "processor_path": "https://taro******.oss-cn-shanghai.aliyuncs.com/eas_python_app/app.py",
  "data_image": "mubu******.cn-shanghai.cr.aliyuncs.com/taro/eas_pmml:v1",
  "metadata": {
    "instance": 1,
     "memory": 2000,
     "cpu": 1
    }
}
  • 4.4 EASCMD部署服务
./eascmd64 create demo2.json

图片.png

五、Java SDK调用服务
  • 5.1 控制台查看部署服务

图片.png

  • 5.2 POSTMAN调用测试

图片.png

图片.png

  • 5.3 pom.xml
        <dependency>
            <groupId>com.squareup.okhttp</groupId>
            <artifactId>okhttp</artifactId>
            <version>2.7.3</version>
        </dependency>
  • 5.4 Java Code
import com.squareup.okhttp.*;
import java.io.IOException;

public class EASDEMO {

    public static void main(String[] args) throws IOException {
        OkHttpClient client = new OkHttpClient();

        MediaType mediaType = MediaType.parse("application/octet-stream");
        RequestBody body = RequestBody.create(mediaType, "5.6 3.0 4.1 1.3");
        Request request = new Request.Builder()
                .url("http://172*********.cn-shanghai.pai-eas.aliyuncs.com/api/predict/taro_docker_v2")
                .post(body)
                .addHeader("authorization", "MjE2ZDNkMj*********")
                .build();

        Response response = client.newCall(request).execute();
        System.out.println(response.body().string());

    }
}
  • 5.5 测试结果

图片.png


更多参考

安装 Docker
阿里云机器学习模型在线服务自定义Processor部署PMML模型(一)
使用Python开发自定义Processor
eascmd客户端工具

相关文章
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
Cosmos on PAI系列一:PAI-Model Gallery云上一键部署NVIDIA Cosmos Reason-1
本篇文章介绍 Cosmos 最新世界基础模型 Cosmos Reason-1 如何在阿里云人工智能平台 PAI 上进行快速部署使用。
|
5月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
6月前
|
人工智能 运维 API
PAI-Model Gallery云上一键部署阶跃星辰新模型Step1X-Edit
4月27日,阶跃星辰正式发布并开源图像编辑大模型 Step1X-Edit,性能达到开源 SOTA。Step1X-Edit模型总参数量为19B,实现 MLLM 与 DiT 的深度融合,在编辑精度与图像保真度上实现大幅提升,具备语义精准解析、身份一致性保持、高精度区域级控制三项关键能力;支持文字替换、风格迁移等11 类高频图像编辑任务类型。在最新发布的图像编辑基准 GEdit-Bench 中,Step1X-Edit 在语义一致性、图像质量与综合得分三项指标上全面领先现有开源模型,比肩 GPT-4o 与 Gemin。PAI-ModelGallery 支持Step1X-Edit一键部署方案。
|
5月前
|
PyTorch 调度 算法框架/工具
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
DLC任务Pytorch launch_agent Socket Timeout问题源码分析与解决方案
227 18
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【新模型速递】PAI-Model Gallery云上一键部署MiniMax-M1模型
MiniMax公司6月17日推出4560亿参数大模型M1,采用混合专家架构和闪电注意力机制,支持百万级上下文处理,高效的计算特性使其特别适合需要处理长输入和广泛思考的复杂任务。阿里云PAI-ModelGallery现已接入该模型,提供一键部署、API调用等企业级解决方案,简化AI开发流程。
|
4月前
|
机器学习/深度学习 人工智能 JSON
DistilQwen-ThoughtX 蒸馏模型在 PAI-ModelGallery 的训练、评测、压缩及部署实践
通过 PAI-ModelGallery,可一站式零代码完成 DistilQwen-ThoughtX 系列模型的训练、评测、压缩和部署。
|
5月前
|
缓存 并行计算 测试技术
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
1096 12
|
6月前
|
人工智能 自然语言处理 运维
Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署
Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!
|
22天前
|
网络协议 NoSQL API
转转客服IM系统的WebSocket集群架构设计和部署方案
客服IM系统是转转自研的在线客服系统,是用户和转转客服沟通的重要工具,主要包括机器人客服、人工客服、会话分配、技能组管理等功能。在这套系统中,我们使用了很多开源框架和中间件,今天讲一下客服IM系统中WebSocket集群的的实践和应用。
88 0

热门文章

最新文章