在阿里云机器学习平台上布置一个PyTorch模型

简介: 在阿里云机器学习平台上布置一个PyTorch模型【1月更文挑战第21天】【1月更文挑战第105篇】

在阿里云机器学习平台上布置一个PyTorch模型,可以使用两种主要方法:通过PAI Python SDK直接提交训练作业,或者使用PAI-Blade的SDK部署优化后的模型推理。

如果您要选择PAI Python SDK,您需要先安装SDK,并配置好访问密钥(AccessKey),以及您的工作空间信息。接下来,您需要准备训练数据,这通常涉及到将数据上传到OSS(Object Storage Service)上。此外,您还需要编写或获取您的训练脚本,这个脚本将使用PyTorch来定义和训练您的模型。

使用PAI Python SDK的过程中,您可以通过Estimator API来创建和管理训练作业。例如,您可以使用预置的PyTorch处理器来部署模型,或者如果您有自定义的推理服务代码,可以使用container_serving_spec方法来创建InferenceSpec,进而部署为在线推理服务。

另一种方法是使用PAI-Blade的SDK来部署优化后的PyTorch模型。PAI-Blade提供了C++ SDK,您可以使用这个SDK来加载并部署已经过PAI-Blade优化的模型。优化后的模型必须依赖对应的SDK才能正常运行。在部署模型推理时,您无需修改原代码逻辑,只需要在编译时链接上PAI-Blade的SDK中的库文件。

无论哪种方法,都建议您熟悉PAI平台的产品文档,以及PyTorch的官方文档,以确保训练和部署过程的顺利进行。对于具体的操作步骤和更详尽的信息,您可以参考阿里云官方的帮助文档和PAI-Blade的SDK文档。

目录
相关文章
|
3月前
|
机器学习/深度学习 监控 安全
从实验室到生产线:机器学习模型部署的七大陷阱及PyTorch Serving避坑指南
本文深入探讨了机器学习模型从实验室到生产环境部署过程中常见的七大陷阱,并提供基于PyTorch Serving的解决方案。内容涵盖环境依赖、模型序列化、资源管理、输入处理、监控缺失、安全防护及模型更新等关键环节。通过真实案例分析与代码示例,帮助读者理解部署失败的原因并掌握避坑技巧。同时,文章介绍了高级部署架构、性能优化策略及未来趋势,如Serverless服务和边缘-云协同部署,助力构建稳健高效的模型部署体系。
117 4
|
4月前
|
PyTorch 调度 算法框架/工具
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
DLC任务Pytorch launch_agent Socket Timeout问题源码分析与解决方案
203 18
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
|
8月前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
5月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
11月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
8月前
|
机器学习/深度学习 边缘计算 PyTorch
PyTorch团队为TorchAO引入1-8比特量化,提升ARM平台性能
PyTorch团队推出创新技术,在其低精度计算库TorchAO中引入低位运算符支持,实现1至8位精度的嵌入层权重量化及8位动态量化激活的线性运算符。该技术通过模块化设计和高效硬件利用,优化了资源受限环境下的深度学习计算,提升了计算效率并降低了资源消耗。新内核与PyTorch生态系统无缝集成,支持即时执行、编译优化及边缘计算,为开发者提供全方位性能优势。测试结果显示,多层次量化策略显著提升了计算效率,保持了模型精度。这一突破为深度学习框架优化开辟了多个研究方向,推动了人工智能在边缘计算等领域的广泛应用。
246 11
PyTorch团队为TorchAO引入1-8比特量化,提升ARM平台性能
|
6月前
PAI-Rec推荐平台对于实时特征有三个层次
PAI-Rec推荐平台针对实时特征有三个处理层次:1) 离线模拟反推历史请求时刻的实时特征;2) FeatureStore记录增量更新的实时特征,模型特征导出样本准确性达99%;3) 通过callback回调接口记录请求时刻的特征。各层次确保了实时特征的准确性和时效性。
144 0
|
10月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
877 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
8月前
|
人工智能 智能设计 数据处理
|
11月前
|
机器学习/深度学习 人工智能 算法
机器学习【教育领域及其平台搭建】
机器学习【教育领域及其平台搭建】
269 6

热门文章

最新文章

推荐镜像

更多