阿里云机器学习模型在线服务自定义Processor部署PMML模型(一)

简介: Processor是包含在线预测逻辑(模型加载和请求预测逻辑)的程序包,如果PAI-EAS提供的官方通用Processor无法满足模型部署需求,则可以根据Processor的开发标准自定义Processor。本文演示如果在本地搭建环境进行测试,并通过EASCMD指令打包方式上传服务到EAS服务器,实现模型在线调用。

Step By Step

1、构建开发环境
2、python本地测试
3、修改app.py文件测试
4、部署服务
5、在线测试
6、Python SDK 服务调用


一、构建开发环境
  • 1.1 本地机器环境
测试实例使用阿里云上海区域ECS:Ubuntu 18.04 64位

图片.png

  • 1.2 EASCMD工具工具安装
# 安装并初始化EASCMD,该示例为安装Linux环境的EASCMD工具。
$ wget http://eas-data.oss-cn-shanghai.aliyuncs.com/tools/eascmd64
# 下载完成后,可以修改访问权限,配置阿里云上AccessKey信息。
$ chmod +x eascmd64
$ ./eascmd64 config -i <access_id> -k <access_key> -e pai-eas.cn-shanghai.aliyuncs.com

# 初始化环境。
$ ./eascmd64 pysdk init ./pyeas_demo

图片.png

图片.png

图片.png

二、python本地测试
pmml文件 下载地址
  • 2.1 依赖包安装
pip install sklearn-pmml-model
  • 2.2 pycharm 测试代码
import pandas as pd
from sklearn_pmml_model.ensemble import PMMLForestClassifier

clf = PMMLForestClassifier(pmml="randomForest.pmml")
df = pd.DataFrame([[5.6, 3.0, 4.1, 1.3]],columns=['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)'])
result  = clf.predict(df)
print(str(result).encode())
  • 2.3 测试结果

图片.png

三、修改app.py文件测试
  • 3.1 到创建的项目下

图片.png

  • 3.2 下载randomForest.pmml模型到目录下面

图片.png

  • 3.3 根据2.2的测试代码修改app.py文件为如下形式
# -*- coding: utf-8 -*-
import allspark
import pandas as pd
import numpy as np
from sklearn_pmml_model.ensemble import PMMLForestClassifier

class MyProcessor(allspark.BaseProcessor):
    """ MyProcessor is a example
        you can send mesage like this to predict
        curl -v http://127.0.0.1:8080/api/predict/service_name -d '6.3 2.5 4.9 1.5'
    """

    def initialize(self):
        """ load module, executed once at the start of the service
         do service intialization and load models in this function.
        """
        self.model = PMMLForestClassifier(pmml="randomForest.pmml")

    def pre_proccess(self, data):
        """ data format pre process
        """
        x, y, z, w = data.split(b' ')
        return float(x), float(y), float(z), float(w)
        
    def post_process(self, data):
        """ proccess after process
        """
        return str(data).encode()
        
    def process(self, data):
        """ process the request data
        """
        x, y, z, w = self.pre_proccess(data)
        df = pd.DataFrame([[x, y, z, w]],columns=['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)'])
        result  = self.model.predict(df)
        print(result)
        return self.post_process(result), 200

if __name__ == '__main__':
    # paramter worker_threads indicates concurrency of processing
    runner = MyProcessor(worker_threads=10)
    runner.run()
  • 3.4 ENV环境安装:sklearn-pmml-model
./ENV/bin/pip install sklearn-pmml-model

图片.png

  • 3.5 启动app
./ENV/bin/python app.py

图片.png

  • 3.6 本地curl测试服务
curl http://127.0.0.1:8080/ -d '5.6 3.0 4.1 1.3'

图片.png

四、部署服务
  • 4.1 服务打包
./eascmd64 pysdk pack ./pyeas_demo

图片.png

  • 4.2 上传压缩包到oss
./eascmd64 upload pyeas_demo.tar.gz --inner

图片.png

  • 4.3 修改app.json部署文件

图片.png

  • 4.4 EASCMD 使用app.json部署服务
/root/eas_demo/eascmd64 create app.json

图片.png

五、在线测试
  • 5.1 控制台查看部署的EAS服务

图片.png

  • 5.2 服务调用测试

图片.png

六、Python SDK 服务调用
  • 6.1 测试代码
import http.client

conn = http.client.HTTPConnection("172144**********.cn-shanghai.pai-eas.aliyuncs.com")  # 请求endpoint
payload = "5.6 3.0 4.1 1.3"  # 请求body
headers = {
    'authorization': "NTQzN2QxZGQy*********"  # 认证Token
    }
conn.request("POST", "/api/predict/pyeas_demo", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
  • 6.2 测试结果

图片.png

说明:

本身PAI EAS服务是支持直接部署pmml格式的模型,这里主要是为了演示自定义process的部署过程,其它类型的模型部署方法类似,这里面主要介绍的是通过eascmd方式构建环境,后面会继续介绍一种基于容器的环境搭建与部署方式。

更多参考

使用Python开发自定义Processor

相关文章
|
2月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
1月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
8天前
|
开发者 Python
阿里云PAI DSW快速部署服务
在使用阿里云DSW实例进行开发的时候,可能需要快速部署服务测试应用效果。DSW实例目前已经支持通过自定义服务访问配置功能,对外提供服务访问能力,您在应用开发过程中无需分享整个DSW实例,即可将服务分享给协作开发者进行测试和验证。
54 23
|
1月前
|
机器学习/深度学习 人工智能 算法
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
阿里云人工智能平台 PAI 顺利通过中国信通院组织的 ITU-T AICP-GA国际标准和《智算工程平台能力要求》国内标准一致性测评,成为国内首家通过该标准的企业。阿里云人工智能平台 PAI 参与完成了智算安全、AI 能力中心、数据工程、模型开发训练、模型推理部署等全部八个能力域,共计220余个用例的测试,并100%通过测试要求,获得了 ITU 国际标准和国内可信云标准评估通过双证书。
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
【NeurIPS'24】阿里云 PAI 团队论文被收录为 Spotlight,并完成主题演讲分享
12月10日,NeurIPS 2024在温哥华开幕,阿里云PAI团队论文《PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations》入选Spotlight,PAI团队还进行了“可信AI的技术解读与最佳实践”主题演讲,展示AI工程化平台产品能力。
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
1月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
128 1
|
2月前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码

热门文章

最新文章