机器学习模型训练和模型评估的过程

简介: 主要记录下模型训练和模型评估的过程

选择算法确定模型

   主要是根据特征和标签之间的关系,选出一个合适的算法,并找出与之对应的合适算法包,然后通过调用这个算法包来建立模型,通过上一篇文章,这个数据集里的某些特征和标签之间存在着近似线性的关系。而且这个数据集的标签是连续变量,因此适合用回归分析来寻找从特征到标签的预测函数。

  所谓的回归分析(regression analysis)就是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析,说白了就是当自变量变化的时候,研究一下因变量是怎么跟着变化的,它可以用来预测客流量、降雨量、销售量等。

  回归分析的算法有多种,如线性回归、多项式回归、贝叶斯回归等等。具体根据特征和标签 之间的关系来决定。初始时特征和标签可能存在线性关系可以用最简单、最基础的机器学习算法线性回归来建模,线性回归是给每一个特征变量找参数的过程。

比如数学中一元线性回归公式:y = a*x +b 对于机器学习来说,我们把斜率a叫做权重(weight) ,用英文字母w代表,把截距b叫做偏置(bias) ,用英文字母b代表,机器学习中一元线性回归公式表示为:

Y = w*x +b

机器学习算法包

  常用的算法工具包是scikit-learn ,简称sklearn 它是使用最广泛的开源python机器学习库,sklearn提供了大量用于数据挖掘的机器学习工具,覆盖数据预处理、可视化、交叉验证和多种机器学习算法。

建立模型

调用LinearRegression建立模型非常简单,如下

from sklearn.liner_model import LinerRegression # 导入线性回归算法模型
linereg_model = LinearRegression() #    使用线性回归创建模型

模型参数有两种,内部参数和外部参数。内部参数是属于算法本身的一部分,不用我们人工来确定,比如线性回归中的权重w和截距b,都是线性回归的内部参数;而外部参数也叫做超参数,他们的值是在创建模型时,由我们自己设定的。LinearRegression模型外部参数主要包含两个布尔值:

fit_intercept ,默认值为True,代表是否计算模型的截距

normalize,默认值为Flase代表是否对特征X在回归之前做规范化。

  • 训练拟合模型

训练模型就是用训练集中的特征变量和已知标签,根据样本大小的损失大小来逐渐拟合函数,确定最优的内部参数,最后完成模型。

linereg_model.fit(x_train,y_train) # 用训练集数据,训练机器,拟合函数,确定内部参数

主要得益于机器学习库的存在,直接通过fit完成模型训练,fit内部核心就是优化其内部参数减少损失,使函数对特征到标签的模拟越来越贴切,  针对所有样本,找到一组平均损失较小的模型参数。 这其中的关键就是:通过梯度下降,逐步优化模型的参数,使训练集误差值达到最小。

梯度下降:通过求导的方法,找到每一步的方向,确保总是往更小的损失方向前进。

  • 评估并优化模型性能。

在验证集和测试集进行模型效果评估的过程中,我们则是通过最小化误差来实现超参数(模型外部参数)的优化。机器学习包中(如scikit-learn)都会提供常用的工具和指标,对验证集和测试集进行评估,进而计算当前的误差。比如R方或者MSE均方误差指标,就可以用于评估回归分析模型的优劣。

预测方法:

通常就直接使用模型中的predict方法进行:

y_pred = linereg_model.predict(x_test) #预测测试集的Y值

比较测试数据集的原始特征数据、原始标签值和模型对标签的预测值组合一起显示、比较

df_ads_pred= X_test.copy() #测试集特征数据
df_ads_pred['浏览量真值'] = y_test
df_ads_pred['浏览量预测值'] = y_pred
df_ads_pred

   查看模型长得什么样?通过LinearRegression的coef_和intercept_属性打印出各个特征的权重和模型的偏置来,它们就是模型的内部参数。

linereg_model.coef_
linereg_model.intercept_

模型的评估分数:常用于评估回归分析模型的指标有两种:R方分数和MSE指标,并且大多数机器学习工具包中都会提供相关的工具,以下是用R方分数来评估模型

linears_model.score(x_test,y_test)

机器学习项目是一个循环迭代的过程,优秀的模型都是一次次迭代的产物模型评估 需要反复评测,找到最优的超参数,确定最终模型。

目录
打赏
0
0
0
0
8
分享
相关文章
全网首发 | PAI Model Gallery一键部署阶跃星辰Step-Video-T2V、Step-Audio-Chat模型
Step-Video-T2V 是一个最先进的 (SoTA) 文本转视频预训练模型,具有 300 亿个参数,能够生成高达 204 帧的视频;Step-Audio 则是行业内首个产品级的开源语音交互模型,通过结合 130B 参数的大语言模型,语音识别模型与语音合成模型,实现了端到端的文本、语音对话生成,能和用户自然地进行高质量对话。PAI Model Gallery 已支持阶跃星辰最新发布的 Step-Video-T2V 文生视频模型与 Step-Audio-Chat 大语言模型的一键部署,本文将详细介绍具体操作步骤。
多元线性回归:机器学习中的经典模型探讨
多元线性回归是统计学和机器学习中广泛应用的回归分析方法,通过分析多个自变量与因变量之间的关系,帮助理解和预测数据行为。本文深入探讨其理论背景、数学原理、模型构建及实际应用,涵盖房价预测、销售预测和医疗研究等领域。文章还讨论了多重共线性、过拟合等挑战,并展望了未来发展方向,如模型压缩与高效推理、跨模态学习和自监督学习。通过理解这些内容,读者可以更好地运用多元线性回归解决实际问题。
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
1月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
86 6
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
99 20
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
108 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
293 13
机器学习算法的优化与改进:提升模型性能的策略与方法
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
65 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等