机器学习模型训练和模型评估的过程

简介: 主要记录下模型训练和模型评估的过程

选择算法确定模型

   主要是根据特征和标签之间的关系,选出一个合适的算法,并找出与之对应的合适算法包,然后通过调用这个算法包来建立模型,通过上一篇文章,这个数据集里的某些特征和标签之间存在着近似线性的关系。而且这个数据集的标签是连续变量,因此适合用回归分析来寻找从特征到标签的预测函数。

  所谓的回归分析(regression analysis)就是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析,说白了就是当自变量变化的时候,研究一下因变量是怎么跟着变化的,它可以用来预测客流量、降雨量、销售量等。

  回归分析的算法有多种,如线性回归、多项式回归、贝叶斯回归等等。具体根据特征和标签 之间的关系来决定。初始时特征和标签可能存在线性关系可以用最简单、最基础的机器学习算法线性回归来建模,线性回归是给每一个特征变量找参数的过程。

比如数学中一元线性回归公式:y = a*x +b 对于机器学习来说,我们把斜率a叫做权重(weight) ,用英文字母w代表,把截距b叫做偏置(bias) ,用英文字母b代表,机器学习中一元线性回归公式表示为:

Y = w*x +b

机器学习算法包

  常用的算法工具包是scikit-learn ,简称sklearn 它是使用最广泛的开源python机器学习库,sklearn提供了大量用于数据挖掘的机器学习工具,覆盖数据预处理、可视化、交叉验证和多种机器学习算法。

建立模型

调用LinearRegression建立模型非常简单,如下

from sklearn.liner_model import LinerRegression # 导入线性回归算法模型
linereg_model = LinearRegression() #    使用线性回归创建模型

模型参数有两种,内部参数和外部参数。内部参数是属于算法本身的一部分,不用我们人工来确定,比如线性回归中的权重w和截距b,都是线性回归的内部参数;而外部参数也叫做超参数,他们的值是在创建模型时,由我们自己设定的。LinearRegression模型外部参数主要包含两个布尔值:

fit_intercept ,默认值为True,代表是否计算模型的截距

normalize,默认值为Flase代表是否对特征X在回归之前做规范化。

  • 训练拟合模型

训练模型就是用训练集中的特征变量和已知标签,根据样本大小的损失大小来逐渐拟合函数,确定最优的内部参数,最后完成模型。

linereg_model.fit(x_train,y_train) # 用训练集数据,训练机器,拟合函数,确定内部参数

主要得益于机器学习库的存在,直接通过fit完成模型训练,fit内部核心就是优化其内部参数减少损失,使函数对特征到标签的模拟越来越贴切,  针对所有样本,找到一组平均损失较小的模型参数。 这其中的关键就是:通过梯度下降,逐步优化模型的参数,使训练集误差值达到最小。

梯度下降:通过求导的方法,找到每一步的方向,确保总是往更小的损失方向前进。

  • 评估并优化模型性能。

在验证集和测试集进行模型效果评估的过程中,我们则是通过最小化误差来实现超参数(模型外部参数)的优化。机器学习包中(如scikit-learn)都会提供常用的工具和指标,对验证集和测试集进行评估,进而计算当前的误差。比如R方或者MSE均方误差指标,就可以用于评估回归分析模型的优劣。

预测方法:

通常就直接使用模型中的predict方法进行:

y_pred = linereg_model.predict(x_test) #预测测试集的Y值

比较测试数据集的原始特征数据、原始标签值和模型对标签的预测值组合一起显示、比较

df_ads_pred= X_test.copy() #测试集特征数据
df_ads_pred['浏览量真值'] = y_test
df_ads_pred['浏览量预测值'] = y_pred
df_ads_pred

   查看模型长得什么样?通过LinearRegression的coef_和intercept_属性打印出各个特征的权重和模型的偏置来,它们就是模型的内部参数。

linereg_model.coef_
linereg_model.intercept_

模型的评估分数:常用于评估回归分析模型的指标有两种:R方分数和MSE指标,并且大多数机器学习工具包中都会提供相关的工具,以下是用R方分数来评估模型

linears_model.score(x_test,y_test)

机器学习项目是一个循环迭代的过程,优秀的模型都是一次次迭代的产物模型评估 需要反复评测,找到最优的超参数,确定最终模型。

目录
相关文章
|
4月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
921 109
|
5月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
359 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
6月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
480 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
5月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
6月前
|
机器学习/深度学习 人工智能 算法
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。
|
5月前
|
机器学习/深度学习 自然语言处理 算法
Java 大视界 -- Java 大数据机器学习模型在自然语言处理中的对抗训练与鲁棒性提升(205)
本文探讨Java大数据与机器学习在自然语言处理中的对抗训练与鲁棒性提升,分析对抗攻击原理,结合Java技术构建对抗样本、优化训练策略,并通过智能客服等案例展示实际应用效果。
|
7月前
|
存储 人工智能 运维
企业级MLOps落地:基于PAI-Studio构建自动化模型迭代流水线
本文深入解析MLOps落地的核心挑战与解决方案,涵盖技术断层分析、PAI-Studio平台选型、自动化流水线设计及实战构建,全面提升模型迭代效率与稳定性。
307 6
|
6月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
6月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。

热门文章

最新文章