FPGA 2017最佳论文出炉:深鉴科技ESE语音识别引擎获奖(附解读)

简介: FPGA 芯片领域顶级会议 FPGA 2017 于 2 月 24 日在加州 Monterey 结束。在本次大会上,斯坦福大学在读 PhD、深鉴科技联合创始人韩松等作者的论文 ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA 获得了大会最佳论文奖。得知此消息后,机器之心对深鉴科技科技创始人兼 CEO 姚颂与联合创始人韩松(本论文的第一作者)进行了联系,他们对该文章进行了技术解读。可点击阅读原文下载此论文。

微信图片_20211128125508.jpg

韩松在FPGA'17会场讲解 ESE 硬件架构


FPGA 领域顶级会议 FPGA 2017 于 2 月 24 日在加州 Monterey 结束。在本次大会上,深鉴科技论文《ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA》获得了大会最佳论文奖(Best Paper Award)。


微信图片_20211128125514.jpg

图1:韩松提出的深度学习部署方案。跟传统的「训完即用」的方案相比,「训练后经过压缩再用硬件加速推理」的方案,可以使得推理更快、能耗更低。


该项工作聚焦于使用 LSTM 进行语音识别的场景,结合深度压缩(Deep Compression)、专用编译器以及 ESE 专用处理器架构,在中端的 FPGA 上即可取得比 Pascal Titan X GPU 高 3 倍的性能,并将功耗降低 3.5 倍。而此前,本文还曾获得 2016 年 NIPS Workshop on Efficient Method for Deep Neural Network 的最佳论文提名。据悉,本文所描述的 ESE 语音识别引擎,也是深鉴科技 RNN 处理器产品的原型。


微信图片_20211128125518.jpg

图 2:ESE 语音识别引擎工作全流程


LSTM 全称为 Long-Short Term Memory,在语音识别、机器翻译、Image Captioning中有较多的应用。对于语音识别而言,LSTM 是其中最重要一环,也是计算耗时最多的一环,通常占到整个语音识别流程时间的 90% 以上。


微信图片_20211128125523.jpg

图 3:LSTM 在语音识别中的位置


Deep Compression 算法可以将 LSTM 压缩 20 倍以上。但在以往的纯算法压缩上,并没有考虑多核并行时的负载均衡,这样在实际运行时,实际的运行性能被负载最大的核所限制。本文提出了一种新的 Load Balance Aware Pruning,在稀疏化时保证剪枝后分配到每个核的计算量类似,从而进一步加速的计算。


微信图片_20211128125526.jpg

图 4:Load-Balance-Aware Pruning示意:保证稀疏性的同时保证多核负载均衡


结合新的模型压缩算法以及 ESE 专用处理架构,在一个可实际使用的 LSTM 模型上测试,相同情况下,深鉴基于中等 FPGA 平台的耗时为 82.7us,功耗为 41W;而 Pascal Titan X GPU 则需要 287.4us 的运行时间,并且耗能 135W。这也再次证明了稀疏化路线的作用:在价格、资源全面弱于 GPU 的专用硬件上,通过算法与硬件的协同优化,的确可以取得更好的深度学习运算能力。


深鉴科技成立于 2016 年 3 月,创始成员来自清华大学和斯坦福大学,公司致力于结合深度压缩与深度学习专用处理架构,提供更高效与便捷的深度学习平台。


公司聚焦于稀疏化神经网络处理得技术路线,提出的 Deep Compression 算法可以将模型尺寸压缩数十倍大小而不损失预测精度,并结合专用的深度学习处理架构来实现加速。而 ICLR 2016 和 FPGA 2017 两篇最佳论文的获奖,也证实深鉴科技所聚焦的稀疏化路线越来越得到深度学习界的关注。


  • 论文:ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA


微信图片_20211128125532.jpg


摘要:长短期记忆网络(LSTM)被广泛用于语音识别领域。为实现更高的预测精度,机器学习研究者们构建了越来越大的模型。然而这样的模型十分耗费计算和存储资源。部署此类笨重的模型会带数据中心来很高的功耗,从而带来很高的总拥有成本(TCO)。为了增加预测速度,提高能源效率,我们首次提出了一种可以在几乎没有预测精度损失的情况下将 LSTM 模型的尺寸压缩 20 倍(10 倍来自剪枝和 2 倍来自量化)的负载平衡感知剪枝(load-balance-aware pruning)方法。这种剪枝后的模型对并行计算很友好。另外,我们提出了可以对压缩模型进行编码和分割成 PE 以进行并行化的调度器(scheduler),并编排了其复杂的 LSTM 数据流。最后,我们设计了一种可以直接在这种压缩模型上工作的硬件框架——Efficient Speech Recognition Engine (ESE)。该框架使用了运行频率为 200 MHz 的 Xilinx XCKU060 FPGA,具有以 282 GOPS 的速度直接运行压缩 LSTM 网络的性能,相当于在未压缩 LSTM 网络上 2.52 TOPS 的速度;此外,该框架执行一个用于语音识别任务的全 LSTM 仅需 41 W 功耗。在基于 LSTM 的语音基准测试中,ESE 的速度为英特尔 Core i7 5930k CPU 的 43 倍,英伟达 Pascal Titan X GPU 的 3 倍。它的能量效率分别为以上两种处理器的 40 倍和 11.5 倍。


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
机器学习/深度学习 自然语言处理 大数据
INTERSPEECH 2022论文解读|Paraformer: 高识别率、高计算效率的单轮非自回归端到端语音识别模型
INTERSPEECH 是由国际语音通讯协会(International Speech Communication Association, ISCA)创办的语音信号处理领域顶级旗舰国际会议。历届 INTERSPEECH 会议都备受全球各地语音语言领域人士的广泛关注。 本文介绍一种具有高识别率与计算效率的单轮非自回归模型 Paraformer。该论文已被 INTERSPEECH 2022 接收。
890 0
INTERSPEECH 2022论文解读|Paraformer: 高识别率、高计算效率的单轮非自回归端到端语音识别模型
|
机器学习/深度学习 人工智能 达摩院
IEEE SLT 2022论文解读|基于多帧跨通道注意力机制的多说话人语音识别
‍近期,阿里巴巴达摩院高校AIR合作论文“MFCCA:Multi-frame cross-channel attention for multi-speaker ASR in multi-party meeting scenario”被IEEE SLT 2022接收。该论文考虑到麦克风阵列不同麦克风接收信号的差异,提出了一种多帧跨通道注意力机制,该方法对相邻帧之间的跨通道信息进行建模,以利用帧级和通道级信息的互补性。
833 0
|
机器学习/深度学习 达摩院 前端开发
INTERSPEECH 2022论文解读|针对多方会议场景下说话人相关语音识别的对比研究
INTERSPEECH是由国际语音通讯协会 (International Speech Communication Association, ISCA) 创办的语音信号处理领域顶级旗舰国际会议。历届INTERSPEECH会议都备受全球各地语音语言领域人士的广泛关注。 ‍本文主要对比研究三种SA-ASR的方法,通过对说话人日志、语音分离和语音识别模块的耦合,在M2MeT竞赛上发布的真实会议场景语料库AliMeeting上进行了相关实验,有效地降低了说话人相关字错误率(SD-CER)。论文已被INTERSPEECH 2022接收。
797 0
|
机器学习/深度学习 自然语言处理 大数据
INTERSPEECH 2022论文解读|Paraformer: 高识别率、高计算效率的单轮非自回归端到端语音识别模型
近年来,随着端到端语音识别的流行,基于 Transformer 结构的语音识别系统逐渐成为了主流。然而,由于 Transformer 是一种自回归模型,需要逐个生成目标文字,计算复杂度随着目标文字数量而呈线性增加,限制了其在工业生产中的应用。
1748 0
INTERSPEECH 2022论文解读|Paraformer: 高识别率、高计算效率的单轮非自回归端到端语音识别模型
|
26天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
131 69
|
30天前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
67 26
|
2月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
65 8
|
2月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
65 11
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
52 1

热门文章

最新文章