基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR

简介: 本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。

1.算法仿真效果
vivado2019.2仿真结果如下(完整代码运行后无水印):

设置SNR=1db

f508c34b950d43da8c7b3c7af78ecc64_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

设置SNR=5db

b41049e4c13777a3b2e894fa8c701d61_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

设置SNR=10db

17a5fc7a16b37246a7a2e7e001bfdb36_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

和之前开发的普通QPSK调制解调系统相比,软解调误码率更低。

基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR_fpga qpsk-CSDN博客

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要
QPSK是一种常用的调制方式,通过将两个比特映射到一个复平面上的相位点,实现了高效的信号传输。软解调是一种基于接收信号的概率估计进行解调的方法,能够提供更好的性能。本文将逐步介绍QPSK软解调的实现过程,包括信号采样、相位估计、判决和解调等方面。软解调是一种通过概率估计实现解调的方法,能够在信道噪声存在的情况下提供更好的性能。QPSK是一种常用的调制方式,通过将两个比特映射到相位点,实现了高效的信号传输。本文旨在详细介绍QPSK软解调的实现过程,包括信号采样、相位估计、判决和解调等步骤。

2.1 信号采样
接收到的QPSK信号经过采样操作,得到离散时间信号序列。采样率需要满足奈奎斯特采样定理,通常为比特速率的两倍。

2.2 判决
在QPSK信号解调中,判决过程用于确定每个信号符号的二进制比特值。判决过程根据接收信号的相位进行划分,将其映射到不同的比特值。
假设接收到的信号序列为r[n],判决过程的结果为判决符号d_hat。常见的判决公式为:
if theta_hat > -pi/4 && theta_hat <= pi/4
d_hat = [1, 1]
elseif theta_hat > pi/4 && theta_hat <= 3pi/4
d_hat = [0, 1]
elseif theta_hat > 3pi/4 || theta_hat <= -3*pi/4
d_hat = [0, 0]
else
d_hat = [1, 0]
end

2.3 解调
解调过程将判决的比特值转换为原始数据比特。解调过程根据映射表将判决比特值转换为原始数据比特。假设判决比特值为d_hat,解调过程的结果为解调比特d。常见的解调公式为:
if d_hat == [1, 1]
d = [0, 0]
elseif d_hat == [0, 1]
d = [0, 1]
elseif d_hat == [0, 0]
d = [1, 0]
else
d = [1, 1]
end

2.4 软解调
软解调是QPSK软解调的关键步骤,它利用判决符号和相位估计的结果进行概率估计,以提高解调的准确性。假设判决符号为d_hat,软解调过程的结果为软解调符号d。常见的软解调公式为: d = d_hat / P(d_hat|r[n])

    其中P(d_hat|r[n])表示在接收到信号r[n]的条件下,判决符号d_hat为d_hat的概率。该概率可以通过估计信号点的概率分布函数或使用最大似然估计等方法得到。软解调过程需要进行概率估计,以提高解调的准确性。这涉及到估计信号点的概率分布函数或使用其他概率估计方法,其中噪声的影响需要被适当地考虑。

3.Verilog核心程序

TQPSK TQPSKU(
.i_clk  (i_clk),
.i_rst  (i_rst),
.i_Ibits(i_Ibits),
.i_Qbits(i_Qbits),

.o_Ifir (o_Ifir),
.o_Qfir (o_Qfir),
.o_cos  (),
.o_sin  (),
.o_modc (),
.o_mods (),
.o_mod  (o_mod_T)
);

//加入信道
awgns awgns_u(
    .i_clk(i_clk), 
    .i_rst(i_rst), 
    .i_SNR(i_SNR), //这个地方可以设置信噪比,数值大小从-10~50,
    .i_din(o_mod_T[30:15]+o_mod_T[31:16]), 
    .o_noise(),
    .o_dout(o_Nmod_T)
    );  


//QPSK解调
wire signed[15:0]o_b1;
wire signed[15:0]o_b2;
RQPSK RQPSKU(
.i_clk  (i_clk),
.i_clkSYM(i_clkSYM),
.i_rst  (i_rst),
.i_med  (o_Nmod_T),
.o_cos  (),
.o_sin  (),
.o_modc (o_modc),
.o_mods (o_mods),
.o_Ifir (o_rIfir),
.o_Qfir (o_rQfir),
.o_b1(o_b1),
.o_b2(o_b2)
);


 //计算误码率   
 //I,Q两路分别计算,最后统计平均值作为误码率
//error calculate
wire [31:0]w_error_num1;
wire [31:0]w_error_num2;
Error_Chech Error_Chech_u1(
    .i_clk(i_clk), 
    .i_rst(i_rst), 
    .i_trans({~i_Ibits,1'b1}), 
    .i_rec({~o_b1[15],1'b1}), 
    .o_error_num(w_error_num1), 
    .o_total_num()
    );

//error calculate
Error_Chech Error_Chech_u2(
    .i_clk(i_clk), 
    .i_rst(i_rst), 
    .i_trans({~i_Qbits,1'b1}), 
    .i_rec({o_b2[15],1'b1}), 
    .o_error_num(w_error_num2), 
    .o_total_num(o_total_num)
    ); 

assign o_error_num={w_error_num1[31],w_error_num1[31:1]} + {w_error_num2[31],w_error_num2[31:1]} ;

endmodule
0sj_019m
相关文章
|
28天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
135 69
|
4天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的8PSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现8PSK调制解调系统,包含高斯信道、误码率统计、ILA数据采集和VIO在线SNR设置模块。通过硬件测试和Matlab仿真,展示了不同SNR下的星座图。8PSK调制通过改变载波相位传递信息,具有高频谱效率和抗干扰能力。开发板使用及程序移植方法详见配套视频和文档。
21 7
|
11天前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的QPSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的QPSK调制解调系统的硬件实现与仿真效果。系统包含测试平台(testbench)、高斯信道模块、误码率统计模块,支持不同SNR设置,并增加了ILA在线数据采集和VIO在线SNR设置功能。通过硬件测试验证了系统在不同信噪比下的性能,提供了详细的模块原理及Verilog代码示例。开发板使用说明和移植方法也一并给出,确保用户能顺利在不同平台上复现该系统。
51 15
|
19天前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的2FSK调制解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的2FSK调制解调系统,包含高斯信道、误码率统计模块及testbench。系统增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同SNR下的硬件测试,并提供操作视频指导。理论部分涵盖频移键控(FSK)原理,包括相位连续与不连续FSK信号的特点及功率谱密度特性。Verilog代码实现了FSK调制解调的核心功能,支持在不同开发板上移植。硬件测试结果展示了不同SNR下的性能表现。
61 6
|
2月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
68 8
|
2月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
69 11
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
52 1
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
63 4
|
3月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
3月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
69 16

热门文章

最新文章