LabVIEW FPGA开发实时滑动摩擦系统

简介: LabVIEW FPGA开发实时滑动摩擦系统

LabVIEW FPGA开发实时滑动摩擦系统


由于非线性摩擦效应的建模和补偿的固有困难,摩擦系统的运动控制已被广泛研究。最近,人们更加关注滑动动力学和滑动定位,作为传统机器人定位的低成本和更灵活的驱动替代方案。摩擦控制器设计和适当选择基础摩擦模型的问题很重要。同样重要的是,要认识到摩擦是一种时变现象,并且会随着磨损或污染物引入系统而发生巨大变化。因此,有必要能够连续量化系统的摩擦状态,以提供最佳的运动控制。


这项工作提出了一种用于滑动的实时摩擦识别方案,该方案通过专用的实时运动控制系统实现,该系统利用DSP进行运动控制,FPGA进行力数据收集和分析。


应用是通过推动元件的等速驱动在旋转板上以环为中心。


f3237a2a62842538e3b578030680f73c.png


测量探头命令线性滑块伺服跟随,并收集数据以表征环表面。通过最小二乘技术对数据进行建模,然后从模型中提取偏移距离和方向等参数。这些参数被定向到运动控制子程序,该子程序以恒定速度驱动滑块,以使推头使零件几何中心与旋转中心直线移动。当零件被驱动时,从推头中的压电传感器收集力数据。中心对齐的目标公差为2.5μ米.


系统利用PXI-8187RT控制器、PXI-7350RT运动控制模块和PXI-7831 RFPGA模块。PXI-7350RT使用板载Motorola68331浮点处理器和板载数字信号处理器(DSP)进行8轴运动控制。由于高可用采样率,FPGA用于力传感器数据采集,并使用LabVIEW FPGA软件模块进行编程。所有硬件组件都集成在一个通用的PXI机箱中。


系统摩擦状态很少是恒定的。滑动表面的磨损、固体和液体污染物进出系统的运输以及零件居中状况的变化都会给摩擦模型带来变化。为了捕捉这些效应,描述了基础摩擦模型参数的实时识别方案。主要摩擦模型参数的识别使用对数递减法进行处理。在这项工作中,通过反演一般动力学模型来识别每次驱动达到的峰值力和实现的自由滑动距离。通过这种方式,单个驱动可以提供来自不同来源的摩擦估计。


力感测通过压电感测元件实现,该元件的输出被放大并定向到PXI实时系统机箱中安装的FPGA PXI-7831R卡的模拟输入(AI)端口。力捕获通过FPGA AI捕获进行。


5dddcc474b44d3afb517bb33e009d814.png



摩擦预测器模型中使用的自由距离由数字线性测量探头量化,该探头创建分辨率为20nm的正交编码器信号。探头输出从致动力传感器读取的失去接触点捕获,直到零件停止滑动。探头输出被引导至DSP模块的数字编码器输入。


观测力的一阶摩擦预测器和观测到的自由滑动距离的二阶摩擦预测器。此外,还定义了导数加权组合方案。识别方案预测给定应用中的滑动摩擦在5%以内。


这种摩擦识别方法还具有系统建模和运动控制路径规划之外的影响。此外,实时摩擦识别可用作机器诊断评估的一个要素。通过检测系统摩擦状态的重大变化来监控机器运行状况,并提供后续生成的维护请求或警报条件。


厂家没有提供LabVIEW的例子。根据通讯协议的相关的说明,编写了适合项目的程序。程序截图如下所示。


相关资料说明,如下所示。


LabVIEW程序,如下附件所示。

相关文章
|
22天前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
44 8
|
29天前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
50 11
|
5月前
|
数据采集 传感器 监控
如何在LabVIEW中使用FPGA模块
如何在LabVIEW中使用FPGA模块
160 1
|
2月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
2月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
60 16
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
### 简介 本项目采用VIVADO 2019.2进行了十六进制相位移键控(16PSK)算法仿真,结果显示,在SNR=30dB时效果为Tttttttttttttt12,在SNR=20dB时效果为Tttttttttttttt34。系统RTL结构如Tttttttttttttt555555所示。16PSK是一种高效的相位调制技术,能在每个符号时间内传输4比特信息,适用于高速数据传输。其工作原理包括将比特流映射到16个相位状态之一(Tttttttttttttt777777),并通过匹配滤波和决策进行解调。具体Verilog核心程序见完整代码。
41 1
|
3月前
|
算法 测试技术 开发工具
基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
该系统在原有的QPSK调制解调基础上,新增了高斯信道和误码率统计模块,验证了不同SNR条件下的QPSK误码性能。系统包括数据生成、QPSK调制与解调等模块,使用Vivado 2019.2进行仿真,展示了SNR分别为15dB、10dB、5dB和1dB时的误码情况。系统采用Verilog语言实现,具有高效、可靠的特点。
61 3
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于Vivado 2019.2实现了2ASK调制解调系统,新增高斯信道及误码率统计模块,验证了不同SNR条件下的ASK误码表现。2ASK通过改变载波振幅传输二进制信号,其调制解调过程包括系统设计、Verilog编码、仿真测试及FPGA实现,需考虑实时性与并行性,并利用FPGA资源优化非线性操作。
79 0
|
5月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
113 6
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
|
4月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的BPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于Vivado2019.2,在原有BPSK调制解调基础上新增高斯信道及误码率统计模块,可测试不同SNR条件下的误码性能。仿真结果显示,在SNR=0dB时误码较高,随着SNR增至5dB,误码率降低。理论上,BPSK与2ASK信号形式相似,但基带信号不同。BPSK信号功率谱仅含连续谱,且其频谱特性与2ASK相近。系统采用Verilog实现,包括调制、加噪、解调及误码统计等功能,通过改变`i_SNR`值可调整SNR进行测试。
57 1

热门文章

最新文章

下一篇
DataWorks