干货 | Elasticsearch、Kibana数据导出实战

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 以下两个导出问题来自Elastic中文社区。问题1、kibana怎么导出查询数据?问题2:elasticsearch数据导出就像数据库数据导出一样,elasticsearch可以么?或者找到它磁盘上存放数据的位置,拷贝出来,放到另一个es服务器上或者转成自己要的数据格式?

image.png

链接

实际业务实战中,大家或多或少的都会遇到导入、导出问题。

根据数据源的不同,基本可以借助:


1、程序写入

2、数据同步(logstash/flume/cana/es_hadoopl等)

来实现关系型数据库(如:Oracle、mysql)、非关系型数据库(如:Mongo、Redis)、大数据(Hadoop、Spark、Hive)到Elasticsearch的写入。

而数据的导出,一部分是业务场景需要,如:业务系统中支持检索结果导出为CSV、Json格式等。

还有一部分是分析数据的需求:期望借助Kibana工具将仪表盘聚合结果导出、不需要借助程序尽快将满足给定条件的结果数据导出等。

这些快速导出的需求,最好借助插件或者第三方工具实现。

本文将重点介绍Kibana/Elasticsearch高效导出的插件、工具集。


2、期望导出数据格式

一般期望导出:CSV、Json格式。


3、Kibana导出工具

3.1 Kibana 官方导出

步骤1:点击Kibana;

步骤2:左侧选择数据,筛选字段;

步骤3:右侧点击:share->csv reports。

步骤4:菜单栏:选择Management->Reporting->下载。

image.png

image.png

以上是kibana6.5.4的实操截图。

其他常见报表数据导出:

image.png

image.png

注意:建议7.X以上版本使用。低版本不支持。


4、Elasticsearch导出工具

4.1 es2csv

1、简介:用Python编写的命令行实用程序,用于以Lucene查询语法或查询DSL语法查询Elasticsearch,并将结果作为文档导出到CSV文件中。

es2csv 可以查询多个索引中的批量文档,并且只获取选定的字段,这可以缩短查询执行时间。

2、地址:https://pypi.org/project/es2csv/

3、使用方法:


es2csv -u 192.168.1.1:9200 -q '{"_source":{"excludes":["*gxn",,"*kex","vperxs","lpix"]},"query":{"term":{"this_topic":{"value":41}}}}' -r -i sogou_topic -o ~/export.csv

1

4、使用效果:

官方最新更新支持5.X版本,实际验证6.X版本也可以使用,导出效率高。

image.png

5、推荐指数:

五星,

Elasticsearch导出CSV首选方案。


4.2 elasticsearch-dump

1、简介:Elasticsearch导入导出工具。

支持操作包含但不限于:

1)、数据导出


导出索引、检索结果、别名或模板为Json

导出索引为gzip

支持导出大文件切割为小文件

支持统一集群不同索引间或者跨索引数据拷贝

2)、数据导入

支持Json数据、S3数据导入Elasticsearch。

2、地址:https://github.com/taskrabbit/elasticsearch-dump

3、使用方法:


elasticdump \

 --input=http://production.es.com:9200/my_index \

 --output=query.json \

 --searchBody='{"query":{"term":{"username": "admin"}}}'

1

2

3

4

如上,将检索结果导出为json文件。

更多导入、导出详见github介绍。

4、使用效果:

早期1.X版本没有reindex操作,使用elasticdump解决跨集群数据备份功能。效果可以。

5、推荐指数:

五星。

Elasticsearch导出json首选方案。


4.3 logstash_output_csv

步骤1:安装logstash_output_csv工具:


D:\ogstash-6.5.4\bin>logstash-plugin.bat  install  logstash-output-csv

Validating logstash-output-csv

Installing logstash-output-csv

Installation successful

1

2

3

4

步骤2:配置conf文件

核心的:输入input,输出ouput,中间处理filter都在如下的配置文件中。

输入:指定ES地址,索引,请求query语句;

输出:csv输出地址,输出字段列表。


input {

elasticsearch {

   hosts => "127.0.0.1:9200"

   index => "company_infos"

   query => '

   {

    "query": {

     "match_all": {}

    }

   }

 '

 }

}


output {

 csv {

   # elastic field name

   fields => ["no", "name", "age", "company_name", "department", "sex"]

   # This is path where we store output.  

   path => "D:\logstash-6.5.4\export\csv-export.csv"

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

步骤3:执行导出


D:\\logstash-6.5.4\bin>logstash -f ../config/logstash_ouput_csv.conf

Sending Logstash logs to D:/2.es_install/logstash-6.5.4/logs which is now configured via log4j2.properties

[2019-08-03T23:45:00,914][WARN ][logstash.config.source.multilocal] Ignoring the 'pipelines.yml' file because modules or command line options are specified

[2019-08-03T23:45:00,934][INFO ][logstash.runner          ] Starting Logstash {"logstash.version"=>"6.5.4"}

[2019-08-03T23:45:03,473][INFO ][logstash.pipeline        ] Starting pipeline {:pipeline_id=>"main", "pipeline.workers"=>8, "pipeline.batch.size"=>125, "pipeline.batch.delay"=>50}

[2019-08-03T23:45:04,241][INFO ][logstash.pipeline        ] Pipeline started successfully {:pipeline_id=>"main", :thread=>"#<Thread:0x34b305d3 sleep>"}

[2019-08-03T23:45:04,307][INFO ][logstash.agent           ] Pipelines running {:count=>1, :running_pipelines=>[:main], :non_running_pipelines=>[]}

[2019-08-03T23:45:04,740][INFO ][logstash.agent           ] Successfully started Logstash API endpoint {:port=>9600}

[2019-08-03T23:45:05,610][INFO ][logstash.outputs.csv     ] Opening file {:path=>"D:/logstash-6.5.4/export/csv-export.csv"}

[2019-08-03T23:45:07,558][INFO ][logstash.pipeline        ] Pipeline has terminated {:pipeline_id=>"main", :thread=>"

image.png

地址:https://medium.com/@shaonshaonty/export-data-from-elasticsearch-to-csv-caaef3a19b69

5、小结

根据业务场景选择导出数据的方式。

image.png



相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
3月前
|
数据可视化 Java Windows
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
本文介绍了如何在Windows环境下安装Elasticsearch(ES)、Elasticsearch Head可视化插件和Kibana,以及如何配置ES的跨域问题,确保Kibana能够连接到ES集群,并提供了安装过程中可能遇到的问题及其解决方案。
Elasticsearch入门-环境安装ES和Kibana以及ES-Head可视化插件和浏览器插件es-client
|
1月前
|
存储 JSON Java
ELK 圣经:Elasticsearch、Logstash、Kibana 从入门到精通
ELK是一套强大的日志管理和分析工具,广泛应用于日志监控、故障排查、业务分析等场景。本文档将详细介绍ELK的各个组件及其配置方法,帮助读者从零开始掌握ELK的使用。
|
1月前
|
存储 监控 安全
|
2月前
|
自然语言处理 搜索推荐 关系型数据库
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
这篇文章是关于Elasticsearch全文搜索引擎的学习指南,涵盖了基本概念、命令风格、索引操作、分词器使用,以及数据的增加、修改、删除和查询等操作。
36 0
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
|
2月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
223 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
2月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
216 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
2月前
|
运维 监控 数据可视化
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
81 1
|
3月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
2月前
|
消息中间件 监控 关系型数据库
MySQL数据实时同步到Elasticsearch:技术深度解析与实践分享
在当今的数据驱动时代,实时数据同步成为许多应用系统的核心需求之一。MySQL作为关系型数据库的代表,以其强大的事务处理能力和数据完整性保障,广泛应用于各种业务场景中。然而,随着数据量的增长和查询复杂度的提升,单一依赖MySQL进行高效的数据检索和分析变得日益困难。这时,Elasticsearch(简称ES)以其卓越的搜索性能、灵活的数据模式以及强大的可扩展性,成为处理复杂查询需求的理想选择。本文将深入探讨MySQL数据实时同步到Elasticsearch的技术实现与最佳实践。
167 0
|
3月前
|
JSON 自然语言处理 数据库
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
概念、ik分词器、倒排索引、索引和文档的增删改查、RestClient对索引和文档的增删改查
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
下一篇
DataWorks