促进人工智能发展的四种技术

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 人工智能如今被广泛用于根据消费者先前的搜索和购买以及其他在线活动,为消费者提供定制建议。在商业应用中,人工智能在产品优化、库存规划和物流等方面发挥着关键作用。

image.png
“人工智能”这一术语最早出现在1956年。人工智能是通过机器(特别是计算机系统)模仿人类智力的过程。专家系统、自然语言处理、语音识别、机器视觉是人工智能应用的一些典型例子。人工智能如今被广泛用于根据消费者先前的搜索和购买以及其他在线活动,为消费者提供定制建议。在商业应用中,人工智能在产品优化、库存规划和物流等方面发挥着关键作用。

人工智能及其应用

医疗保健:医疗保健行业采用的人工智能可以提供量身定制的药物和X光片的诊断。个人保健助理可以充当私人教练,提醒患者吃药、锻炼以及饮食健康。
制造:制造行业采用人工智能可能会利用循环网络(这是一种与序列数据一起使用的深度学习网络形式)来评估工厂设施中的物联网数据,因为它从连接的设备输入,以预测负载和需求。
生命科学:人工智能技术可以释放数据的全部潜力来解决人们面临的一些重大健康问题,从保证药物安全到更快地将新药推向市场。
零售:零售行业采用人工智能提供的虚拟购物功能提供量身定制的建议以及讨论用户的购买选择。人工智能还将促进库存管理和站点布局。
银行:银行采用的人工智能提高了人类活动的速度、精度和效率。人工智能方法可用于金融机构,以确定哪些交易可能是欺诈性的,实施快速准确的信用评分,并使劳动密集型数据管理活动实现自动化。
•公共部门:人工智能可以使智慧城市更加智能,它可以帮助应急机构做好任务准备和预防性维护。人工智能具有全面提高计划效率和有效性的潜力。

1.机器学习
机器学习是一种自动创建分析模型的数据分析类型。这是一个人工智能领域,其基础是计算机可以从数据中学习、识别模式,并在很少或没有人工输入的情况下做出选择。

机器学习的应用:大多数处理大量数据的企业都承认机器学习技术的重要性。

金融领域的服务:银行和其他金融机构将机器学习用于识别具有价值的数据见解和防止欺诈这两个主要目的。
医疗保健服务:由于可穿戴设备和传感器的发展可以利用数据实时分析患者的健康状况,机器学习成为医疗保健领域的快速增长趋势。医学专家可以使用该技术来检查数据,并发现可能导致更好诊断和治疗的趋势或危险信号。
政府:因为政府部门有许多可以挖掘洞察力的数据来源,所以公共安全和公用事业等政府部署需要采用机器学习技术。
零售:零售行业可以使用机器学习来评估消费者的购买历史,他们的网站会根据消费者之前的购买情况推荐可能喜欢的商品。零售商使用机器学习来收集、评估和应用数据来定制购物体验、执行营销活动、定价优化、商品供应计划和消费者洞察。
2.深度学习
深度学习是一种机器学习,在其应用中,计算机被训练执行类似人类的任务,例如语音识别、图片识别和预测。深度学习设置了有关数据的基本参数,并通过检测利用多层处理的模式来训练计算机自行学习,而不是通过预先设定的模式安排数据。

深度学习的应用:

语音识别:用于语音识别的深度学习在企业和学术领域都获得了发展和进步。为了检测人类的语音和语音模式,Xbox、Skype、GoogleNow和Apple的Siri等已经在人工助理系统中使用了深度学习技术。
自然语言处理:多年来,深度学习的关键组成部分神经网络一直被用于处理和解释文本。这种方法是文本挖掘的一个子集,可用于在各种来源中查找模式,其中包括消费者投诉、医疗记录和新闻报道等。
图像识别:自动图片字幕和场景描述是图像识别的两个实际应用。在自动驾驶汽车中采用360度摄像头技术也将增强图片识别能力。
推荐系统:亚马逊公司和Netflix推广了推荐系统,该系统可以根据用户之前的行为和活动预测其下一步可能感兴趣的内容。深度学习可用于在音乐品味或服装偏好等复杂环境中改进跨多个平台的建议。
3.自然语言处理(NLP)
自然语言处理(NLP)是一个人工智能领域,可以帮助计算机理解、解释和操纵人类语言。为了弥合人类交流和机器理解之间的差距,自然语言处理(NLP)依赖于多个领域,包括计算机科学和计算语言学。自然语言处理并不是一个新学科,但由于人们对人机通信的兴趣日益浓厚,以及海量数据的可用性、强大的计算能力和改进的算法,自然语言处理技术正在迅速发展。

自然语言处理(NLP)的应用:

文本分析和自然语言处理:文本分析对单词进行计数和分类,以从大量材料中提取结构和含义,与自然语言处理密切相关。
自然语言处理(NLP)在日常生活中的例子:自然语言处理(NLP)在人们的日常生活中有广泛的常见和实际应用。贝叶斯垃圾邮件过滤是一种统计自然语言处理方法,可将垃圾邮件术语与合法电子邮件进行比较以识别垃圾邮件。人们是否曾经错过一些重要电话,然后在电子邮件收件箱或智能手机应用程序上阅读语音邮件记录?这就是语音到文本的转换,也是自然语言处理(NLP)的一项功能。
4.计算机视觉
计算机视觉是一个人工智能领域,它训练计算机分析和理解图像。机器可以使用来自摄像头和视频的数字图片以及深度学习模型可靠地检测和分类事物,然后对它们观察到的内容做出反应。在许多领域,计算机视觉接近并超越了人类的视觉能力,从识别人到分析足球比赛的实况。

计算机视觉的应用:

图片分割将图像分成许多区域或片段,每个区域或片段都可以独立进行研究。
物体检测是识别照片中特定物体的过程。足球场、进攻球员、防守球员、足球等都可以使用单个图像中的高级对象识别进行识别。为了构建边界框并识别其中的所有内容,这些模型使用X和Y坐标进行标识。
面部识别是一种复杂的对象检测形式,它不仅可以识别图片中的特定人物。
边缘​​检测是一种确定项目或景观的边缘以更好地识别图像中内容的方法。
识别图片中重复形式、颜色和其他视觉线索的技术称为模式检测。
照片的分类将它们分成不同的类别。
特征匹配是一种模式识别形式,它可以比较图片的相似性以帮助对其进行分类。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

目录
相关文章
|
5天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
35 3
|
14天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
118 59
|
3天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
32 7
|
5天前
|
人工智能 自然语言处理 自动驾驶
技术与人性:探索人工智能伦理的边界####
本文深入探讨了人工智能技术飞速发展背景下,伴随而来的伦理挑战与社会责任。不同于传统摘要直接概述内容,本文摘要旨在引发读者对AI伦理问题的关注,通过提出而非解答的方式,激发对文章主题的兴趣。在智能机器逐渐融入人类生活的每一个角落时,我们如何确保技术的善意使用,保护个人隐私,避免偏见与歧视,成为亟待解决的关键议题。 ####
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
61 11
|
8天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
43 4
|
8天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
12天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
11天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。

热门文章

最新文章