从阿里云峰会看一站式数据AI平台的演进

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 今年因为广州疫情爆发,没能到现场参加阿里云峰会,只能线下看直播,从云原生,数据治理到AI开发范式,智能运维,低代码开发,无不揭示了云给大家带来的价值。可以看到今年所有主题的核心都是围绕如何为开发者构建高效的范式和架构支撑软件开发迭代,这也算是回归了云的初心。

今年因为广州疫情爆发,没能到现场参加阿里云峰会,只能线下看直播,从云原生,数据治理到AI开发范式,智能运维,低代码开发,无不揭示了云给大家带来的价值。可以看到今年所有主题的核心都是围绕如何为开发者构建高效的范式和架构支撑软件开发迭代,这也算是回归了云的初心。

从阿里一站式AI平台看清MLOps

虽然这次峰会涉及的主题很多,但最让我感兴趣的还是贾老师的“云上大数据与AI开发范式的演进”,因为AI后半段是拼地是工程落地能力,如何快速并准确地完成数据治理和模型迭代不仅需要NB的算法人员和方法轮,还需要有完善基础设施,不然只能是小作坊式作业。

AI开发范式演进.png

学过近代史的都知道,小作坊的效率是永远比不过工业化革命的大工厂的,那么如何从小作坊变成高效的算法工厂呢?拆解开来,核心是三大块:

  • 数据治理
  • 算法探索
  • 流程范式

为什么是这三块呢?其实从阿里云AI平台的布局可以看到,通过大数据与AI一体化平台来推动作为一起模型训练根源的数据治理工作,通过推出快速体验的云端 Jupyter 平台为算法人员快速探索算法,和通过打通机器学习全链路的PAI平台将AI工程化能以一种标准的流程范式的形式进行快速落地。

全链路数据治理

dataworks数据治理平台.png

数据治理可以说是AI大规模落地的最大障碍也不为过。每个公司做算法工程落地地时候发现最多的工作都耗费在各种 kafka 的对接,数据集成,数据加工,数据清洗,数据核验上面,而围绕着开发效率优先的工作模式下数据体系快速腐化就变成了一个不可避免的事实了。

数据治理核心是提升数据服务的效率,将工程人员从数据的漩涡中拯救出来,而不是每天面对数据做各种低价值工作。

算法探索神器notebook

相信每个算法开发,甚至大部分 python 开发人员都使用过 jupyter notebook 这款 web IDE,可以说这款 IDE 把交互式地优势发挥到极致了,
今天贾老师提出 jupyter web server 的概念其实一点都不奇怪,不管是 google 一直在推的 colab,还是kubeflow 的 jupyter server,本质都是这样的产品,甚至jupyter server 的功能很早就作为 kubeflow 其除 pipeline 工作流以外最核心的卖点。
一个随时能使用的算法开发环境,这一定是每个算法人员的刚需,同时也是最适合和云技术结合的,利用云原生技术可以为算法人员在任何时候提供一个具有足够资源的完整开发环境,快速开始开发。这确实切入了很多算法人员的痛点。
jupyter-kfserving.png

AI流程范式

阿里云PAI平台.png

说到PAI平台,其实还瞒感慨的,因为16年的时候当时自己也带团队做过一个大数据的可视化建模平台,当时就是参照了PAI平台的界面进行的产品设计,不过这几年 PAI 平台的快速发展已经完全不是当年那个只是具有拖拉拽功能的大数据机器学习建模平台了,逐渐变成一个集可视化建模、交互式建模、弹性推理服务为一体的 MLOps 平台。
特别是和云原生的结合,让她在给开发者赋能上提供了更多地可能性,其实当年在做可视化平台的时候这个问题就暴露出来,就是完全的可视化操作在灵活性上和适应性上是很差的,这也是为什么这几年低代码平台兴起的缘故。

这里做个大胆地预测,后面阿里云 PAI 平台应该会引进 git 的版本管理,彻底将算法工程化全流程打通,通过提供全流程的高效开发为AI工程化铺路。

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
1月前
|
云安全 人工智能 安全
Dify平台集成阿里云AI安全护栏,构建AI Runtime安全防线
阿里云 AI 安全护栏加入Dify平台,打造可信赖的 AI
|
1月前
|
人工智能 vr&ar UED
获奖公布|第十九届"挑战杯"竞赛2025年度中国青年科技创新"揭榜挂帅"擂台赛阿里云“AI技术助力乡村振兴”专题赛拟授奖名单公示
获奖公布|第十九届"挑战杯"竞赛2025年度中国青年科技创新"揭榜挂帅"擂台赛阿里云“AI技术助力乡村振兴”专题赛拟授奖名单公示
|
1月前
|
机器学习/深度学习 人工智能 Serverless
吉利汽车携手阿里云函数计算,打造新一代 AI 座舱推理引擎
当前吉利汽车研究院人工智能团队承担了吉利汽车座舱 AI 智能化的方案建设,在和阿里云的合作中,基于星睿智算中心 2.0 的 23.5EFLOPS 强大算力,构建 AI 混合云架构,面向百万级用户的实时推理计算引入阿里云函数计算的 Serverless GPU 算力集群,共同为智能座舱的交互和娱乐功能提供大模型推理业务服务,涵盖的场景如针对模糊指令的复杂意图解析、文生图、情感 TTS 等。
|
1月前
|
机器学习/深度学习 人工智能 算法
阿里云视频云以 360° 实时回放技术支撑 NBA 2025 中国赛 —— AI 开启“智能观赛”新体验
NBA中国与阿里云达成合作,首发360°实时回放技术,融合AI视觉引擎,实现多视角、低延时、沉浸式观赛新体验,重新定义体育赛事观看方式。
298 0
阿里云视频云以 360° 实时回放技术支撑 NBA 2025 中国赛 —— AI 开启“智能观赛”新体验
|
1月前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI上下文工程是优化大模型交互的系统化框架,通过管理指令、记忆、知识库等上下文要素,解决信息缺失、长度溢出与上下文失效等问题。依托AnalyticDB等技术,实现上下文的采集、存储、组装与调度,提升AI Agent的准确性与协同效率,助力企业构建高效、稳定的智能应用。
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
396 29
|
1月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
451 27
|
2月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
780 38
|
1月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
302 1
|
1月前
|
消息中间件 人工智能 安全
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,涵盖AgentScope-Java、AI MQ、Higress、Nacos及可观测体系,全面开源核心技术,助力企业构建分布式多Agent架构,推动AI原生应用规模化落地。
222 0
构建企业级 AI 应用:为什么我们需要 AI 中间件?

热门文章

最新文章

下一篇
oss云网关配置