基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统

简介: 基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统

阿里云向量检索  Milvus 版现已无缝集成于阿里云 PAI 平台,一站式赋能用户构建高性能的检索增强生成(RAG)系统。您可以利用 Milvus  作为向量数据的实时存储与检索核心,高效结合 PAI 和 LangChain 技术栈,实现从理论到实践的快速转化,搭建起功能强大的 RAG  解决方案。



背景信息



随着 AI 技术的飞速发展,生成式人工智能在文本生成、图像生成等领域展现出了令人瞩目的成就。然而,在广泛应用大语言模型(LLM)的过程中,一些固有局限性逐渐显现:

  • 领域知识局限:大语言模型通常基于大规模通用数据集训练而成,这意味着它们在处理专业垂直领域的具体应用时可能缺乏针对性和深度。
  • 信息更新滞后:由于模型训练所依赖的数据集具有静态特性,大模型无法实时获取和学习最新的信息与知识进展。
  • 模型误导性输出:受制于数据偏差、模型内在缺陷等因素,大语言模型有时会出现看似合理实则错误的输出,即所谓的“大模型幻觉”。


为克服这些挑战,并进一步强化大模型的功能性和准确性,检索增强生成技术  RAG(Retrieval-Augmented  Generation)应运而生。这一技术通过整合外部知识库,能够显著减少大模型虚构的问题,并提升其获取及应用最新知识的能力,从而实现更个性化和精准化的  LLM 定制。


RAG  技术架构的核心为检索和生成。其中,检索部分采用了高效的向量检索引擎和向量数据库技术,例如基于开源库 Faiss、Annoy 以及 HNSW  算法优化构建的 Milvus  系统,极大地提升了对大规模数据进行快速检索和精确分析的能力。这样的设计使得RAG能够在必要时即时调用相关领域或最新信息,有效弥补了传统大语言模型的不足之处。


前提条件


  • 已创建 Milvus 实例,并配置了公网访问。具体操作请参见快速创建Milvus实例和网络访问与安全设置。
    快速创建Milvus:https://c.tb.cn/F3.bTSz5E
    网络访问与安全设置:https://c.tb.cn/F3.bTr1Sz

  • 已开通 PAI(EAS)并创建了默认工作空间。具体操作,请参见开通PAI并创建默认工作空间。
    开通PAI并创建默认工作空间:https://c.tb.cn/F3.bTNveI

使用限制


Milvus 实例和 PAI(EAS)须在相同地域下。



操作流程


步骤一:通过 PAI 部署 RAG 系统

  1. 进入模型在线服务 EAS
  1. 登录 PAI控制台。
    https://c.tb.cn/F3.bTLLdz
  2. 在左上角顶部菜单栏选择目标地域。
  3. 在左侧导航栏选择模型部署>模型在线服务(EAS)在下拉框中选择目标工作空间后单击进入EAS
  1. PAI-EAS 模型在线服务页面,单击部署服务
  2. 部署服务页面,选择大模型RAG对话系统
  3. 部署大模型RAG对话系统页面,配置以下关键参数,其余参数可使用默认配置,更多参数详情请参见大模型RAG对话系统。
    https://c.tb.cn/F3.bTuLmy


参数

描述

基本信息

服务名称

您可以自定义。

模型来源

使用默认的开源公共模型

资源配置

模型类别

通常选择通义千问7B。例如,Qwen1.5-7b。

资源配置选择

按需选择GPU资源配置。例如,ml.gu7i.c16m30.1-gu30。

向量检索库设置

版本类型

选择Milvus

数据库文件夹名称

您在Milvus中自定义的Collection名称。

访问地址

Milvus实例的内网地址。您可以在Milvus实例的实例详情页面查看。

代理端口

Milvus实例的Proxy Port。您可以在Milvus实例的实例详情页面查看。

账号

配置为root。

密码

配置为创建Milvus实例时,您自定义的root用户的密码。

Collection删除

是否删除已存在的Collection。取值如下:

  • True:删除同名的Collection,再创建新的Collection。如果不存在同名Collection,则直接进行创建。
  • False:保留现有的同名Collection,新加入的数据将追加到该Collection中。

专有网络配置

VPC

创建Milvus实例选择时的VPC、交换机和安全组。您可以在Milvus实例的实例详情页面查看。

交换机

安全组名称


  1. 单机部署
    服务状态变为运行中时,表示服务部署成功。


  1. 模型在线服务(EAS)页面,单击查看Web应用,进入WebUI页面。


步骤二:在 WebUI 中使用 Milvus 向量检索

  1. 测试连通性
    如下图所示,在 RAG 服务 WebUI 界面的
    Settings 选项卡中,系统已自动识别并应用了部署服务时配置的向量检索库设置,并且该设置不支持修改。您可以单击 Connect Milvus,来验证 Milvus 连接是否正常。


    连接正常后 Connection Info 显示 Connect Milvus success。


  1. 上传数据
    如下图所示,您可以在 RAG 服务 WebUI 界面的 Upload 选项卡中,上传 TXT 或 HTML 类型的用户知识库文档。
    本文以PAI.txt例,当完成上传后,会显示Upload 1 files [ PAI.txt, ] Success!
    https://help-static-aliyun-doc.aliyuncs.com/file-manage-files/zh-CN/20240320/digcac/PAI.txt?spm=a2c6h.12873639.article-detail.14.c55551ae7Jc9WI&file=PAI.txt



    您还可以在 Milvus 实例的实例详情页,单击右上角的 Attu Manager,然后输入 Milvus 实例的用户名和密码,可以查看写入的数据和向量等信息。Attu 的相关操作,请参见 Attu操作指南。
    https://c.tb.cn/F3.bgEvBV

  2. 向量检索
    如下图所示,您可以在 RAG 服务 WebUI 界面的 Chat 选项卡中,选择 RAG (Retrieval + LLM),然后进行向量检索等一系列实验。

相关文章
|
6月前
|
PyTorch 调度 算法框架/工具
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
DLC任务Pytorch launch_agent Socket Timeout问题源码分析与解决方案
348 18
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
6月前
|
缓存 并行计算 测试技术
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
1514 12
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1154 6
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
7月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
306 6
|
9月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
10月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
1865 13
机器学习算法的优化与改进:提升模型性能的策略与方法