Java秒杀系统实战系列~分布式唯一ID生成订单编号

简介: 摘要:本篇博文是“Java秒杀系统实战系列文章”的第七篇,在本博文中我们将重点介绍 “在高并发,如秒杀的业务场景下如何生成全局唯一、趋势递增的订单编号”,我们将介绍两种方法,一种是传统的采用随机数生成的方式,另外一种是采用当前比较流行的“分布式唯一ID生成算法-雪花算法”来实现。

摘要:

本篇博文是“Java秒杀系统实战系列文章”的第七篇,在本博文中我们将重点介绍 “在高并发,如秒杀的业务场景下如何生成全局唯一、趋势递增的订单编号”,我们将介绍两种方法,一种是传统的采用随机数生成的方式,另外一种是采用当前比较流行的“分布式唯一ID生成算法-雪花算法”来实现。

内容:

在上一篇博文,我们完成了商品秒杀业务逻辑的代码实战,在该代码中,我们还实现了“当用户秒杀成功后,需要在数据库表中为其生成一笔秒杀成功的订单记录”的功能,其对应的代码如下所示:

private void commonRecordKillSuccessInfo(ItemKill kill, Integer userId) throws Exception{
    //TODO:记录抢购成功后生成的秒杀订单记录
 
    ItemKillSuccess entity=new ItemKillSuccess();
    
    //此处为订单编号的生成逻辑
    String orderNo=String.valueOf(snowFlake.nextId());
    //entity.setCode(RandomUtil.generateOrderCode());   //传统时间戳+N位随机数
    entity.setCode(orderNo); //雪花算法
 
    entity.setItemId(kill.getItemId());
    entity.setKillId(kill.getId());
    entity.setUserId(userId.toString());
    entity.setStatus(SysConstant.OrderStatus.SuccessNotPayed.getCode().byteValue());
    entity.setCreateTime(DateTime.now().toDate());
    //TODO:学以致用,举一反三 -> 仿照单例模式的双重检验锁写法
    if (itemKillSuccessMapper.countByKillUserId(kill.getId(),userId) <= 0){
        int res=itemKillSuccessMapper.insertSelective(entity);
 
        //其他逻辑省略
    }
}

在该实现逻辑中,其核心要点在于“在高并发的环境下,如何高效的生成订单编号”,那么如何才算是高效呢?Debug认为应该满足以下两点:

(1)保证订单编号的生成逻辑要快、稳定,减少时延

(2)要保证生成的订单编号全局唯一、不重复、趋势递增、有时序性

下面,我们采用两种方式来生成“订单编号”,并自己写一个多线程的程序模拟生成的订单编号是否满足条件。

值得一提的是,为了能直观的观察多线程并发生成的订单编号是否具有唯一性、趋势递增,在这里Debug借助了一张数据库表 random_code 来存储生成的订单编号,其DDL如下所示:

CREATE TABLE `random_code` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `code` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `idx_code` (`code`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

从该数据库表数据结构定义语句中可以看出,我们设定了 订单编号字段code 为唯一!所以如果高并发多线程生成的订单编号出现重复,那么在插入数据库表的时候必然会出现错误

下面,首先开始我们的第一种方式吧:基于随机数的方式生成订单编号

(1)首先是建立一个Thread类,其run方法的执行逻辑为生成订单编号,并将生成的订单编号插入数据库表中,其代码如下所示:

/**
 * 随机数生成的方式-Thread
 * @Author:debug (SteadyJack)
 * @Date: 2019/7/11 10:30
 **/
public class CodeGenerateThread implements Runnable{
 
    private RandomCodeMapper randomCodeMapper;
 
    public CodeGenerateThread(RandomCodeMapper randomCodeMapper) {
        this.randomCodeMapper = randomCodeMapper;
    }
 
    @Override
public void run() {
    //生成订单编号并插入数据库
        RandomCode entity=new RandomCode();
        entity.setCode(RandomUtil.generateOrderCode());
        randomCodeMapper.insertSelective(entity);
    }
}

其中,RandomUtil.generateOrderCode()的生成逻辑是借助ThreadLocalRandom来实现的,其完整的源代码如下所示:

/**
 * 随机数生成util
 * @Author:debug (SteadyJack)
 * @Date: 2019/6/20 21:05
 **/
public class RandomUtil {
    private static final SimpleDateFormat dateFormatOne=new SimpleDateFormat("yyyyMMddHHmmssSS");
 
    private static final ThreadLocalRandom random=ThreadLocalRandom.current();
    //生成订单编号-方式一
    public static String generateOrderCode(){
        //TODO:时间戳+N为随机数流水号
        return dateFormatOne.format(DateTime.now().toDate()) + generateNumber(4);
    }
 
    //N为随机数流水号
    public static String generateNumber(final int num){
        StringBuffer sb=new StringBuffer();
        for (int i=1;i<=num;i++){
            sb.append(random.nextInt(9));
        }
        return sb.toString();
    }
}

(2)紧接着是在 BaseController控制器 中开发一个请求方法,目的正是用来模拟前端高并发触发产生多线程并生成订单编号的逻辑,在这里我们暂且用1000个线程进行模拟,其源代码如下所示:

@Autowired
private RandomCodeMapper randomCodeMapper;
 
//测试在高并发下多线程生成订单编号-传统的随机数生成方法
@RequestMapping(value = "/code/generate/thread",method = RequestMethod.GET)
public BaseResponse codeThread(){
    BaseResponse response=new BaseResponse(StatusCode.Success);
    try {
        ExecutorService executorService=Executors.newFixedThreadPool(10);
        for (int i=0;i<1000;i++){
            executorService.execute(new CodeGenerateThread(randomCodeMapper));
        }
    }catch (Exception e){
        response=new BaseResponse(StatusCode.Fail.getCode(),e.getMessage());
    }
    return response;
}

(3)完了之后,就可以将整个项目、系统运行在外置的tomcat中了,然后打开postman,发起一个Http的Get请求,请求链接为:http://127.0.0.1:8092/kill/base/code/generate/thread ,仔细观察控制台的输出信息,会看一些令自己躁动不安的东西:
image
竟然会出现“重复生成了重复的订单编号”!而且,打开数据库表进行观察,会发现“他娘的1000个线程生成订单编号,竟然只有900多个记录”,这就说明了这么多个线程在执行生成订单编号的逻辑期间出现了“重复的订单编号”!如下图所示:
image
因此,此种基于随机数生成唯一ID或者订单编号的方式,我们是可以Pass掉了(当然啦,在并发量不是很高的情况下,这种方式还是阔以使用的,因为简单而且易于理解啊!)

鉴于此种“基于随机数生成”的方式在高并发的场景下并不符合我们的要求,接下来,我们将介绍另外一种比较流行的、典型的方式,即“分布式唯一ID生成算法-雪花算法”来实现。

对于“雪花算法”的介绍,各位小伙伴可以参考Github上的这一链接,我觉得讲得还是挺清晰的:https://github.com/souyunku/SnowFlake ,详细的Debug在这里就不赘述了,下面截取了部分概述:
image
SnowFlake算法在分布式的环境下,之所以能高效率的生成唯一的ID,我觉得其中很重要的一点在于其底层的实现是通过“位运算”来实现的,简单来讲,就是直接跟机器打交道!其底层数据的存储结构(64位)如下图所示:
image
下面,我们就直接基于雪花算法来生成秒杀系统中需要的订单编号吧!

(1)同样的道理,我们首先定义一个Thread类,其run方法的实现逻辑是借助雪花算法生成订单编号并将其插入到数据库中。

/** 基于雪花算法生成全局唯一的订单编号并插入数据库表中
 * @Author:debug (SteadyJack)
 * @Date: 2019/7/11 10:30
 **/
public class CodeGenerateSnowThread implements Runnable{
 
    private static final SnowFlake SNOW_FLAKE=new SnowFlake(2,3);
 
    private RandomCodeMapper randomCodeMapper;
 
    public CodeGenerateSnowThread(RandomCodeMapper randomCodeMapper) {
        this.randomCodeMapper = randomCodeMapper;
    }
 
    @Override
    public void run() {
        RandomCode entity=new RandomCode();
        //采用雪花算法生成订单编号
        entity.setCode(String.valueOf(SNOW_FLAKE.nextId()));
        randomCodeMapper.insertSelective(entity);
    }
}

其中,SNOW_FLAKE.nextId() 的方法正是采用雪花算法生成全局唯一的订单编号的逻辑,其完整的源代码如下所示:

/** * 雪花算法
 * @author: zhonglinsen
 * @date: 2019/5/20
 */
public class SnowFlake {
    //起始的时间戳
    private final static long START_STAMP = 1480166465631L;
 
    //每一部分占用的位数
    private final static long SEQUENCE_BIT = 12; //序列号占用的位数
    private final static long MACHINE_BIT = 5;   //机器标识占用的位数
    private final static long DATA_CENTER_BIT = 5;//数据中心占用的位数
 
    //每一部分的最大值
    private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
 
    //每一部分向左的位移
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;
 
    private long dataCenterId;  //数据中心
    private long machineId;     //机器标识
    private long sequence = 0L; //序列号
    private long lastStamp = -1L;//上一次时间戳
 
    public SnowFlake(long dataCenterId, long machineId) {
        if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {
            throw new IllegalArgumentException("dataCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0");
        }
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
        }
        this.dataCenterId = dataCenterId;
        this.machineId = machineId;
    }
 
    //产生下一个ID
    public synchronized long nextId() {
        long currStamp = getNewStamp();
        if (currStamp < lastStamp) {
            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
        }
 
        if (currStamp == lastStamp) {
            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currStamp = getNextMill();
            }
        } else {
            //不同毫秒内,序列号置为0
            sequence = 0L;
        }
 
        lastStamp = currStamp;
 
        return (currStamp - START_STAMP) << TIMESTAMP_LEFT //时间戳部分
                | dataCenterId << DATA_CENTER_LEFT       //数据中心部分
                | machineId << MACHINE_LEFT             //机器标识部分
                | sequence;                             //序列号部分
    }
 
    private long getNextMill() {
        long mill = getNewStamp();
        while (mill <= lastStamp) {
            mill = getNewStamp();
        }
        return mill;
    }
 
    private long getNewStamp() {
        return System.currentTimeMillis();
    }
}

(2)紧接着,我们在BaseController中开发一个请求方法,用于模拟前端触发高并发产生多线程抢单的场景。

/**
 * 测试在高并发下多线程生成订单编号-雪花算法
 * @return
 */
@RequestMapping(value = "/code/generate/thread/snow",method = RequestMethod.GET)
public BaseResponse codeThreadSnowFlake(){
    BaseResponse response=new BaseResponse(StatusCode.Success);
    try {
        ExecutorService executorService=Executors.newFixedThreadPool(10);
        for (int i=0;i<1000;i++){
            executorService.execute(new CodeGenerateSnowThread(randomCodeMapper));
        }
    }catch (Exception e){
        response=new BaseResponse(StatusCode.Fail.getCode(),e.getMessage());
    }
    return response;
}

(3)完了之后,我们采用Postman发起一个Http的Get请求,其请求链接如下所示:http://127.0.0.1:8092/kill/base/code/generate/thread/snow ,观察控制台的输出信息,可以看到“一片安然的景象”,再观察数据库表的记录,可以发现,1000个线程成功触发生成了1000个对应的订单编号,如下图所示:
image
除此之外,各位小伙伴还可以将线程数从1000调整为10000、100000甚至1000000,然后观察控制台的输出信息以及数据库表的记录等等。

Debug亲测了1w跟10w的场景下是木有问题的,100w的线程数的测试就交给各位小伙伴去试试了(时间比较长,要有心理准备哦!)至此,我们就可以将雪花算法生成全局唯一的订单编号的逻辑应用到我们的“秒杀处理逻辑”中,即其代码(在KillService的commonRecordKillSuccessInfo方法中)如下所示:

ItemKillSuccess entity=new ItemKillSuccess();
String orderNo=String.valueOf(snowFlake.nextId());//雪花算法
entity.setCode(orderNo); 
//其他代码省略

补充:
1、由于相应的博客的更新可能并不会很快,故而如果有想要快速入门以及实战整套系统的,可以阅读: Java商城秒杀系统的设计与实战视频教程(SpringBoot版)

2、目前,这一秒杀系统的整体构建与代码实战已经全部完成了,完整的源代码数据库地址可以来这里下载:https://gitee.com/steadyjack/SpringBoot-SecondKill

相关文章
|
15天前
|
数据管理 API 调度
鸿蒙HarmonyOS应用开发 | 探索 HarmonyOS Next-从开发到实战掌握 HarmonyOS Next 的分布式能力
HarmonyOS Next 是华为新一代操作系统,专注于分布式技术的深度应用与生态融合。本文通过技术特点、应用场景及实战案例,全面解析其核心技术架构与开发流程。重点介绍分布式软总线2.0、数据管理、任务调度等升级特性,并提供基于 ArkTS 的原生开发支持。通过开发跨设备协同音乐播放应用,展示分布式能力的实际应用,涵盖项目配置、主界面设计、分布式服务实现及部署调试步骤。此外,深入分析分布式数据同步原理、任务调度优化及常见问题解决方案,帮助开发者掌握 HarmonyOS Next 的核心技术和实战技巧。
145 76
鸿蒙HarmonyOS应用开发 | 探索 HarmonyOS Next-从开发到实战掌握 HarmonyOS Next 的分布式能力
|
2月前
|
监控 Java API
如何使用Java语言快速开发一套智慧工地系统
使用Java开发智慧工地系统,采用Spring Cloud微服务架构和前后端分离设计,结合MySQL、MongoDB数据库及RESTful API,集成人脸识别、视频监控、设备与环境监测等功能模块,运用Spark/Flink处理大数据,ECharts/AntV G2实现数据可视化,确保系统安全与性能,采用敏捷开发模式,提供详尽文档与用户培训,支持云部署与容器化管理,快速构建高效、灵活的智慧工地解决方案。
|
15天前
|
物联网 调度 vr&ar
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
鸿蒙技术分享:HarmonyOS Next 深度解析 随着万物互联时代的到来,华为发布的 HarmonyOS Next 在技术架构和生态体验上实现了重大升级。本文从技术架构、生态优势和开发实践三方面深入探讨其特点,并通过跨设备笔记应用实战案例,展示其强大的分布式能力和多设备协作功能。核心亮点包括新一代微内核架构、统一开发语言 ArkTS 和多模态交互支持。开发者可借助 DevEco Studio 4.0 快速上手,体验高效、灵活的开发过程。 239个字符
186 13
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
|
22天前
|
NoSQL Java Redis
秒杀抢购场景下实战JVM级别锁与分布式锁
在电商系统中,秒杀抢购活动是一种常见的营销手段。它通过设定极低的价格和有限的商品数量,吸引大量用户在特定时间点抢购,从而迅速增加销量、提升品牌曝光度和用户活跃度。然而,这种活动也对系统的性能和稳定性提出了极高的要求。特别是在秒杀开始的瞬间,系统需要处理海量的并发请求,同时确保数据的准确性和一致性。 为了解决这些问题,系统开发者们引入了锁机制。锁机制是一种用于控制对共享资源的并发访问的技术,它能够确保在同一时间只有一个进程或线程能够操作某个资源,从而避免数据不一致或冲突。在秒杀抢购场景下,锁机制显得尤为重要,它能够保证商品库存的扣减操作是原子性的,避免出现超卖或数据不一致的情况。
51 10
|
1月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
70 4
|
2月前
|
设计模式 消息中间件 搜索推荐
Java 设计模式——观察者模式:从优衣库不使用新疆棉事件看系统的动态响应
【11月更文挑战第17天】观察者模式是一种行为设计模式,定义了一对多的依赖关系,使多个观察者对象能直接监听并响应某一主题对象的状态变化。本文介绍了观察者模式的基本概念、商业系统中的应用实例,如优衣库事件中各相关方的动态响应,以及模式的优势和实际系统设计中的应用建议,包括事件驱动架构和消息队列的使用。
|
2月前
|
存储 运维 负载均衡
构建高可用性GraphRAG系统:分布式部署与容错机制
【10月更文挑战第28天】作为一名数据科学家和系统架构师,我在构建和维护大规模分布式系统方面有着丰富的经验。最近,我负责了一个基于GraphRAG(Graph Retrieval-Augmented Generation)模型的项目,该模型用于构建一个高可用性的问答系统。在这个过程中,我深刻体会到分布式部署和容错机制的重要性。本文将详细介绍如何在生产环境中构建一个高可用性的GraphRAG系统,包括分布式部署方案、负载均衡、故障检测与恢复机制等方面的内容。
125 4
构建高可用性GraphRAG系统:分布式部署与容错机制
|
2月前
|
运维 自然语言处理 供应链
Java云HIS医院管理系统源码 病案管理、医保业务、门诊、住院、电子病历编辑器
通过门诊的申请,或者直接住院登记,通过”护士工作站“分配患者,完成后,进入医生患者列表,医生对应开具”长期医嘱“和”临时医嘱“,并在电子病历中,记录病情。病人出院时,停止长期医嘱,开具出院医嘱。进入出院审核,审核医嘱与住院通过后,病人结清缴费,完成出院。
124 4
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
【AI系统】分布式通信与 NVLink
进入大模型时代后,AI的核心转向大模型发展,训练这类模型需克服大量GPU资源及长时间的需求。面对单个GPU内存限制,跨多个GPU的分布式训练成为必要,这涉及到分布式通信和NVLink技术的应用。分布式通信允许多个节点协作完成任务,而NVLink则是一种高速、低延迟的通信技术,用于连接GPU或GPU与其它设备,以实现高性能计算。随着大模型的参数、数据规模扩大及算力需求增长,分布式并行策略,如数据并行和模型并行,变得至关重要。这些策略通过将模型或数据分割在多个GPU上处理,提高了训练效率。此外,NVLink和NVSwitch技术的持续演进,为GPU间的高效通信提供了更强的支持,推动了大模型训练的快
46 0
|
2月前
|
Java 数据库连接 数据库
深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能
在Java应用开发中,数据库操作常成为性能瓶颈。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能。文章介绍了连接池的优势、选择和使用方法,以及优化配置的技巧。
50 1

热门文章

最新文章