大数据开发是先学习Hadoop还是spark,看10万程序猿所留下的结论

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 从目前我遇到过的面试者和看过的简历来看,凡是没有过大数据项目经验的人,简历写出花来都是扯淡。部署一个集群,装一个Hive,HBase什么的根本就不叫大数据(有的公司甚至部署Hadoop只用HDFS,每天处理5GB数据,这是我面过的一个人告诉我的他的工作经验)。

首先,我先申明:任何以『做大数据好像挣得多』为名学习数据科学相关的内容都是不谨慎,而且难以有回报的。而且,任何『只要学会一两种工具就能做大数据』的想法也都是盲目的,难有成效的。

从目前我遇到过的面试者和看过的简历来看,凡是没有过大数据项目经验的人,简历写出花来都是扯淡。部署一个集群,装一个Hive,HBase什么的根本就不叫大数据(有的公司甚至部署Hadoop只用HDFS,每天处理5GB数据,这是我面过的一个人告诉我的他的工作经验)。一次处理1个TB以下的数据都不叫大数据(我还在权衡,是不是要提高这个量级)。

大数据是建立在数据科学基础上的,对编程、算法,分布式计算、统计学,线性代数,机器学习,系统构架都有比较高的要求。而且要看英文就像看中文一样(这条很重要,我一般对于不积极主动看英文资料的人没有什么太大的期待)。

我的建议是不要管什么Hadoop,Spark。把基础打牢,只要编程技巧和算法精通,能看英文文献,顺便学点概率统计,随便去哪个公司都能应聘大数据的岗位,等有了项目环境,上手Hadoop或者Spark还不是分分钟的事~

image

image

image

关于大数据的含义前面也有人说了,你想学的是技术层面的话,你所列出的两个编程工具并不存在过多需要纠结的地方,有位高手告诉我,它们都是数据分布运算的一种中间环节和处理过程。

我倒是认为大数据处理和分析中更重要的是和各行业相结合的分析思路和方法,也就是特定场景下的数据分析,这需要你找准自己喜欢并愿意作为事业的方向,比如,选择金融数据分析,健康数据分析等,在这些领域里你的知识有多广,决定了你为未来有多高。

大数据的发展之路还有很多年,你还有时间,加油!

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
0
13
分享
相关文章
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
116 79
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
319 2
ClickHouse与大数据生态集成:Spark & Flink 实战
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
126 4
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
263 2
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
231 1
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
288 6
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
131 2
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
153 1
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
140 5
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
64 4
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等