深入解析Kafka消费者——提交和偏移量

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: KafkaConsumer(消费者)每次调用 poll()方法,它总是返回由生产者写入 Kafka但还没有被消费者读取过的记录, 我们因 此可以追踪到哪些记录是被群组里的哪个消费者读取的。

KafkaConsumer(消费者)每次调用 poll()方法,它总是返回由生产者写入 Kafka但还没有被消费者读取过的记录, 我们因 此可以追踪到哪些记录是被群组里的哪个消费者读取的。之前已经讨论过, Kafka 不会像其他 JMS 队列那样需要得到消费者的确认,这是 Kafka 的一个独特之处。相反,消 费者可以使用 Kafka来追踪消息在分区里的位置(偏移量)。

我们把更新分区当前位置的操作叫作提交

那么消费者是如何提交偏移量的呢?消费者往一个 叫作 _consumer_offset 的特殊主题发送 消息,消息里包含每个分区的偏移量。 如果消费者一直处于运行状态,那么偏移量就没有 什么用处。不过,如果悄费者发生崩溃或者有新 的消费者加入群组,就会触发再均衡,完 成再均衡之后,每个消费者可能分配到新 的分区,而不是之前处理的那个。为了能够继续 之前的工作,消费者需要读取每个分区最后一次提交 的偏移量,然后从偏移量指定的地方 继续处理。

如果提交的偏移量小于客户端处理 的最后一个消息的偏移量 ,那么处于两个偏移量之间的 消息就会被重复处理,如图 4-6所示。

img_76ca6a5d2dea2ca0d2d3b3ba5359070a.png

如果提交的偏移量大于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的 消息将会丢失,如图 4-7 所示。

img_7acc9f00cdd85a9b0a2281b3c7106c8d.png

所以,处理偏移量的方式对客户端会有很大的影响。 KafkaConsumer API提供了很多种方式来提交偏移量。

自动提交

最简单的提交方式是让悄费者自动提交偏移量。如果enable.auto.commit被设为 true,那么每过5s,消费者会自动把从 poll() 方法接收到的最大偏移量提交上去。提交时间间隔由 auto.commit.interval.ms 控制,默认值是 5s。与消费者里的其他东西 一样,自动提交也是在轮询(poll() )里进行的。消费者每次在进行轮询时会检查是否该提交偏移量了,如果是,那 么就会提交从上一次轮询返回的偏移量。

不过,在使用这种简便的方式之前,需要知道它将会带来怎样的结果。
假设我们仍然使用默认的 5s提交时间间隔,在最近一次提交之后的 3s发生了再均衡,再 均衡之后,消费者从最后一次提交的偏移量位置开始读取消息。这个时候偏移量已经落后 了 3s,所以在这 3s 内到达的消息会被重复处理。可以通过修改提交时间间隔来更频繁地提交偏移量,减小可能出现重复消息的时间窗,不过这种情况是无也完全避免的 。

在使用自动提交时 ,每次调用轮询方怯都会把上一次调用返 回的偏移量提交上去,它并不 知道具体哪些消息已经被处理了,所以在再次调用之前最好确保所有当前调用返回 的消息 都已经处理完毕(在调用 close() 方法之前也会进行自动提交)。 一般情况下不会有什么问 题,不过在处理异常或提前退出轮询时要格外小心 。

自动提交虽然方便 , 不过并没有为开发者留有余地来避免重复处理消息。


提交当前偏移量

大部分开发者通过控制偏移量提交时间来消除丢失消息的可能性,井在发生再均衡时减少 重复消息的数量。消费者 API提供了另一种提交偏移量的方式 , 开发者可以在必要的时候 提交当前偏移盘,而不是基于时间间隔。

取消自动提交,把 auto.commit.offset 设为 false,让应用程序决定何时提交 偏 移量。使用 commitSync() 提交偏移量最简单也最可靠。这个 API会提交由 poll() 方法返回 的最新偏移量,提交成 功后马上返回,如果提交失败就抛出异常。

要记住, commitSync() 将会提交由 poll() 返回的最新偏移量 , 所以在处理完所有记录后要 确保调用了 commitSync(),否则还是会有丢失消息的风险。如果发生了再均衡,从最近一 批消息到发生再均衡之间的所有消息都将被重复处理。

下面是我们在处理完最近一批消息后使用 commitSync() 方法提交偏移量的例子。

img_9e5f80119b463990cac376c5cccad6c4.png


异步提交

同步提交有一个不足之处,在 broker对提交请求作出回应之前,应用程序会一直阻塞,这样会限制应用程序的吞吐量。我们可以通过降低提交频率来提升吞吐量,但如果发生了再均衡, 会增加重复消息的数量。

这个时候可以使用异步提交 API。我们只管发送提交请求,无需等待 broker的响应。

img_f1ac1138fe8b0d2d2ec4705bea302009.png

在成功提交或碰到无怯恢复的错误之前, commitSync() 会一直重试(应用程序也一直阻塞),但是 commitAsync() 不会,这也是 commitAsync() 不好的 一个地方。它之所以不进行重试,是因为在它收到 服务器响应的时候,可能有一个更大的偏移量已经提交成功。假设我们发出一个请求用于提交偏移量 2000,这个时候发生了短暂的通信问题 ,服务器收不到请求,自然也不会 作出任何响应。与此同时,我们处理了另外一批消息,并成功提交了偏移量 3000。如果 commitAsync() 重新尝试提交偏移量 2000,它有可能在偏移量 3000之后提交成功。这个时 候如果发生再均衡,就会出现重复消息。

我们之所以提到这个问题的复杂性和提交顺序的重要性,是因为 commitAsync()也支持回 调,在 broker 作出响应时会执行回调。回调经常被用于记录提交错误或生成度量指标, 不 过如果你要用它来进行重试, 一定要注意提交的顺序。

img_0a2d6385b057e84ab6d23ee014aed55d.png

重试异步提交

我们可以使用一个单调递增的序列号来维护异步提交的顺序。在每次提交偏 移量之后或在回调里提交偏移量时递增序列号。在进行重试前,先检查回调 的序列号和即将提交的偏移量是否相等,如果相等,说明没有新的提交,那么可以安全地进行重试。如果序列号比较大,说明有一个新的提交已经发送出去了,应该停止重试。


同步和异步组合提交

一般情况下,针对偶尔出现的提交失败,不进行重试不会有太大问题,因为如果提交失败 是 因为临时问题导致的,那么后续的提交总会有成功的。但如果这是发生在关闭消费者或 再均衡前的最后一次提交,就要确保能够提交成功。

因此,在消费者关闭前一般会组合使用 commitAsync()和 commitSync()。它们的工作原理如下(后面讲到再均衡监听器时,我们会讨论如何在发生再均衡前提交偏移量):

img_3eb32d5d60352627e6b9a21a8543e642.png


提交特定的偏移量

提交偏移量的频率与处理消息批次的频率是一样的。但如果想要更频繁地提交出怎么办?如果 poll() 方法返回一大批数据,为了避免因再均衡引起的重复处理整批消息,想要在批次中间提交偏移量该怎么办?这种情况无法通过调用 commitSync()或 commitAsync() 来实现,因为它们只会提交最后一个偏移量,而此时该批次里的消息还没有处理完。

幸运的是,消费者 API 允许在调用 commitSync()和 commitAsync()方法时传进去希望提交 的分区和偏移量的 map。假设你处理了半个批次的消息, 最后一个来自主题“customers” 分区 3 的消息的偏移量是 5000, 你可以调用 commitSync() 方法来提交它。不过,因为消费者可能不只读取一个分区, 你需要跟踪所有分区的偏移量,所以在这个层面上控制偏移 量 的提交会让代码变复杂。

下面是提交特定偏移量的例子 :

img_249f43b145d5627ff6a6e8d68985facb.png


再均衡监听器

在提交偏移量一节中提到过,消费者在退出和进行分区再均衡之前,会做一些清理工作。

你会在消费者失去对一个分区的所有权之前提交最后一个已处理记录的偏移量。如果消费 者准备了 一 个缓冲区用于处理偶发的事件,那么在失去分区所有权之前, 需要处理在缓冲 区累积下来的记录。你可能还需要关闭文件句柄、数据库连接等。

在为消费者分配新分区或移除旧分区时,可以通过消费者 API执行 一 些应用程序代码,在调用 subscribe()方法时传进去一个ConsumerRebalancelistener实例就可以了。 ConsumerRebalancelistener有两个需要实现的方法。

  • (1) public void onPartitionsRevoked(Collection<TopicPartition> partitions)方法会在 再均衡开始之前和消费者停止读取消息之后被调用。如果在这里提交偏移量,下一个接 管分区 的消费者就知道该从哪里开始读取了。

  • (2) public void onPartitionsAssigned(Collection<TopicPartition> partitions)方法会在 重新分配分区之后和消费者开始读取消息之前被调用。

下面的例子将演示如何在失去分区所有权之前通过 onPartitionsRevoked()方法来提交偏移量。在下一节,我们会演示另一个同时使用了 onPartitionsAssigned()方法的例子。

img_670ea411c58db907cb80f0aeb386ad8e.png
img_665872ed703dd772073de0a3a7bf978a.png


从特定偏移量处开始处理记录

到目前为止,我们知道了如何使用 poll() 方法从各个分区的最新偏移量处开始处理消息。 不过,有时候我们也需要从特定的偏移量处开始读取消息。

如果你想从分区的起始位置开始读取消息,或者直接跳到分区的末尾开始读取消息, 可以使 用 seekToBeginning(Collection<TopicPartition> tp) 和 seekToEnd(Collection<TopicPartition> tp) 这两个方法。

不过, Kafka也为我们提供了用 于查找特定偏移量的 API。 它有很多用途,比如向 后回退 几个消息或者向前跳过几个消息(对时间比较敏感的应用程序在处理滞后的情况下希望能 够向前跳过若干个消息)。在使用 Kafka 以外的系统来存储偏移量时,它将给我们 带来更 大的惊喜。

试想一下这样的场景:应用程序从 Kafka读取事件(可能是网站的用户点击事件流 ),对 它们进行处理(可能是使用自动程序清理点击操作井添加会话信息),然后把结果保 存到 数据库、 NoSQL 存储引擎或 Hadoop。假设我们真的不想丢失任何数据,也不想在数据库 里多次保存相同的结果。

这种情况下,消费者的代码可能是这样的 :

img_f20c86aa6b2959f86a3e244f962fa0ea.png

在这个例子里,每处理一条记录就提交一次偏移量。尽管如此, 在记录被保存到数据库之后以及偏移量被提交之前 ,应用程序仍然有可能发生崩溃,导致重复处理数据,数据库里就会出现重复记录。

如果保存记录和偏移量可以在一个原子操作里完成,就可以避免出现上述情况。记录和偏 移量要么 都被成功提交,要么都不提交。如果记录是保存在数据库里而偏移量是提交到 Kafka 上,那么就无法实现原子操作。

不过 ,如果在同一个事务里把记录和偏移量都写到数据库里会怎样呢?那么我们就会知道 记录和偏移量要么都成功提交,要么都没有,然后重新处理记录。

现在的问题是:如果偏移量是保存在数据库里而不是 Kafka里,那么消费者在得到新分区 时怎么知道该从哪里开始读取?这个时候可以使用 seek() 方法。在消费者启动或分配到新 分区时 ,可以使用 seek()方法查找保存在数据库里的偏移量。

下面的例子大致说明了如何使用这个 API。 使用 ConsumerRebalancelistener和 seek() 方 战确保我们是从数据库里保存的偏移量所指定的位置开始处理消息的。

img_46f685046f6c074185278b634c9f5441.png
img_84124b863e7b1817871803f7f67579b4.png

通过把偏移量和记录保存到同 一个外部系统来实现单次语义可以有很多种方式,不过它们 都需要结合使用 ConsumerRebalancelistener和 seek() 方法来确保能够及时保存偏移量, 井保证消费者总是能够从正确的位置开始读取消息。


如何退出

在之前讨论轮询时就说过,不需要担心消费者会在一个无限循环里轮询消息,我们会告诉消费者如何优雅地退出循环。

如果确定要退出循环,需要通过另一个线程调用 consumer.wakeup()方法。如果循环运行 在主线程里,可以在 ShutdownHook里调用该方法。要记住, consumer.wakeup() 是消费者 唯一一个可以从其他线程里安全调用的方法。调用 consumer.wakeup()可以退出 poll(), 并抛出 WakeupException异常,或者如果调用 cconsumer.wakeup() 时线程没有等待轮询, 那 么异常将在下一轮调用 poll()时抛出。我们不需要处理 WakeupException,因为它只是用于跳出循环的一种方式。不过, 在退出线程之前调用 consumer.close()是很有必要的, 它 会提交任何还没有提交的东西 , 并向群组协调器(broker)发送消息,告知自己要离开群组,接下来 就会触发再均衡 ,而不需要等待会话超时。

下面是运行在主线程上的消费者退出线程的代码 。 这些代码经过了简化,你可以在这里查 看完整的代码: http://bit.ly/2u47e9A

img_0d91d7199b3e08832d8086c75742ca69.png
img_f5bacc58f1ee8fa9443c18f7d8c882d7.png
目录
相关文章
|
21天前
|
消息中间件 存储 负载均衡
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
51 2
|
25天前
|
安全 Java
Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧
【10月更文挑战第20天】Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧,包括避免在循环外调用wait()、优先使用notifyAll()、确保线程安全及处理InterruptedException等,帮助读者更好地掌握这些方法的应用。
16 1
|
1月前
|
消息中间件 SQL 分布式计算
大数据-62 Kafka 高级特性 主题 kafka-topics相关操作参数 KafkaAdminClient 偏移量管理
大数据-62 Kafka 高级特性 主题 kafka-topics相关操作参数 KafkaAdminClient 偏移量管理
29 6
|
1月前
|
消息中间件 SQL 分布式计算
大数据-76 Kafka 高级特性 稳定性-消费重复 生产者、Broker、消费者 导致的重复消费问题
大数据-76 Kafka 高级特性 稳定性-消费重复 生产者、Broker、消费者 导致的重复消费问题
34 1
|
2月前
|
消息中间件 安全 Kafka
Kafka支持SSL/TLS协议技术深度解析
SSL(Secure Socket Layer,安全套接层)及其继任者TLS(Transport Layer Security,传输层安全)是为网络通信提供安全及数据完整性的一种安全协议。这些协议在传输层对网络连接进行加密,确保数据在传输过程中不被窃取或篡改。
174 0
|
3月前
|
图形学 C# 开发者
全面掌握Unity游戏开发核心技术:C#脚本编程从入门到精通——详解生命周期方法、事件处理与面向对象设计,助你打造高效稳定的互动娱乐体验
【8月更文挑战第31天】Unity 是一款强大的游戏开发平台,支持多种编程语言,其中 C# 最为常用。本文介绍 C# 在 Unity 中的应用,涵盖脚本生命周期、常用函数、事件处理及面向对象编程等核心概念。通过具体示例,展示如何编写有效的 C# 脚本,包括 Start、Update 和 LateUpdate 等生命周期方法,以及碰撞检测和类继承等高级技巧,帮助开发者掌握 Unity 脚本编程基础,提升游戏开发效率。
79 0
|
3月前
|
vr&ar 图形学 开发者
步入未来科技前沿:全方位解读Unity在VR/AR开发中的应用技巧,带你轻松打造震撼人心的沉浸式虚拟现实与增强现实体验——附详细示例代码与实战指南
【8月更文挑战第31天】虚拟现实(VR)和增强现实(AR)技术正深刻改变生活,从教育、娱乐到医疗、工业,应用广泛。Unity作为强大的游戏开发引擎,适用于构建高质量的VR/AR应用,支持Oculus Rift、HTC Vive、Microsoft HoloLens、ARKit和ARCore等平台。本文将介绍如何使用Unity创建沉浸式虚拟体验,包括设置项目、添加相机、处理用户输入等,并通过具体示例代码展示实现过程。无论是完全沉浸式的VR体验,还是将数字内容叠加到现实世界的AR应用,Unity均提供了所需的一切工具。
135 0
|
3月前
|
消息中间件 域名解析 网络协议
【Azure 应用服务】部署Kafka Trigger Function到Azure Function服务中,解决自定义域名解析难题
【Azure 应用服务】部署Kafka Trigger Function到Azure Function服务中,解决自定义域名解析难题
|
6天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
19 2
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
67 0

推荐镜像

更多