Apache Kafka开发入门指南

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: Apache Kafka开发入门指南 Apache Kafka可以帮助你解决在发布/订阅架构中遇到消费数百万消息的问题。如今,商业应用、社交应用以及其它类型的应用产生的实时信息在不断增长,这些信息需要以简单的方式快速、可靠地路由到各种类型的接收者。

Apache Kafka开发入门指南

Apache Kafka可以帮助你解决在发布/订阅架构中遇到消费数百万消息的问题。
如今,商业应用、社交应用以及其它类型的应用产生的实时信息在不断增长,这些信息需要以简单的方式快速、可靠地路由到各种类型的接收者。在大多数情况下,产生信息和消费信息的应用都是自然分开的,彼此不可互相访问。
需要一种机制,让信息的生产者和消费者能无缝地集成。
在大数据时代,收集数据也是一个挑战——因为数据量太大。第二个挑战是分析数据,它通常分为:
1)用户行为数据
2)应用程序性能跟踪
3)日志形式的活动数据
4)事件消息

消息订阅是一种机制,可以连接各种应用程序,帮助消息在彼此之间路由。
Kafka是一个实时消息传输的解决方案,可处理大量实时信息,并把这些信息快速路由到各种消费者。Kafka提供了信息生产者和消费者之间的无缝集成,无需对生产者的信息进行阻塞,也无需告诉生产者那些消费者的位置。

Apache Kafka是一个开源、分布式的消息发布/订阅系统,其主要设计特性如下:
1)消息持久化
要从大数据中获取真正的价值,那么不能丢失任何信息。Apache Kafka设计上是时间复杂度O(1)的磁盘结构,它提供了常量时间的性能,即使是存储海量的信息(TB级)。
2)高吞吐
记住大数据,Kafka的设计是工作在标准硬件之上,支持每秒数百万的消息。
3)分布式
Kafka明确支持在Kafka服务器上的消息分区,以及在消费机器集群上的分发消费,维护每个分区的排序语义。
4)多客户端支持
Kafka系统支持与来自不同平台(如java、.NET、PHP、Ruby或Python等)的客户端相集成。
5)实时
生产者线程产生的消息对消费者线程应该立即可见,此特性对基于事件的系统(比如CEP系统)是至关重要的。
注:CEP即Complex Event Processing,复杂事件处理。

Apache Kafka提供了一个实时的发布/订阅解决方案,它客服了消费实时大数据的挑战,这些数据量可能在数量级的增长、真实的数据。Kafka还支持在Hadoop系统上做并行数据载入。

下面的视图显示了Apache Kafka消息系统支持的一个典型的大数据汇聚和分析的场景:


在生产者端,有数种不同的生产者:
1)前端Web应用产生的应用日志
2)生产者代理产生的Web分析日志
3)生产者适配器产生的传输日志
4)生产者服务产生的调用跟踪日志

在消费者端,有数种不同的消费者:
1)离线消费者:消费消息并在Hadoop或传统的数据仓库中存储消息用于离线分析
2)近乎实时的消费者:消费消息并在任意NoSQL数据库(如HBase或Cassandra)中存储消息用于近实时分析
3)实时消费者:在内存数据库中过滤消息,并在相关的群组中触发警告事件
目录
相关文章
|
1月前
|
消息中间件 安全 Kafka
Apache Kafka安全加固指南:保护你的消息传递系统
【10月更文挑战第24天】在现代企业环境中,数据的安全性和隐私保护至关重要。Apache Kafka作为一款广泛使用的分布式流处理平台,其安全性直接影响着业务的稳定性和用户数据的安全。作为一名资深的Kafka使用者,我深知加强Kafka安全性的重要性。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者了解如何有效地保护Kafka消息传递系统的安全性。
123 7
|
30天前
|
消息中间件 Java Kafka
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
67 5
|
1月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
44 1
|
1月前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka
|
1月前
|
消息中间件 监控 Kafka
Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面
随着大数据技术的发展,Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面,方便管理和监控 Kafka 集群。本文详细介绍了 Kafka Manager 的部署步骤和基本使用方法,包括配置文件的修改、启动命令、API 示例代码等,帮助你快速上手并有效管理 Kafka 集群。
53 0
|
4月前
|
存储 消息中间件 Java
Apache Flink 实践问题之原生TM UI日志问题如何解决
Apache Flink 实践问题之原生TM UI日志问题如何解决
51 1
|
17天前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
306 33
The Past, Present and Future of Apache Flink
|
2月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
864 13
Apache Flink 2.0-preview released
|
2月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
102 3
|
3月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。

推荐镜像

更多