开发者社区> 技术小胖子> 正文

Mysql<->sqoop<->HDFS 数据交换实验

简介:
+关注继续查看

 

SQOOPApache基金会下一个开源产品,Hadoop家族的一个产品,关系型数据库与HDFS文件系统之间进行数据交换,数据迁移的一个工具。

一、环境描述

Mysql版本:mysql-installer-community-5.5.27.1   32

Mysql  for  Windows 7  32位:我把mysql数据库安装在了自己win7的笔记本上,这样的好处就是减少了虚拟机 master  slave的开销和使用空间还可以多利用一台机器的资源,如果你的虚拟机资源很紧张的话也可以这样部署。

Linux ISOCentOS-6.0-i386-bin-DVD.iso 32   

JDK version"1.6.0_25-ea"   for  linux

Hadoop software versionhadoop-0.20.205.0.tar.gz   for  linux

Mysql  versionmysql-installer-community-5.5.27.1   32 for windows

sqoop versionsqoop-1.2.0-CDH3B4.tar.gz   for  linux

主机名

IP

节点名

备注

h1

192.168.2.102

master

namenodejobtracker

h2

192.168.2.103

slave1

datanodetasktracker

H4

192.168.2.105

slave2

datanodetasktracker


 

MySQL部署在宿主环境中:http://f.dataguru.cn/thread-34746-1-1.html  参考飚哥风靡版


 

二、下载软件安装包

帖子名:hadoop第十周clouderasqoop包和hadoop-core-jar包下载

帖子网址:http://f.dataguru.cn/forum.php?mod=viewthread&tid=36867&fromuid=303

欢迎大家下载使用
sqoop-1.2.0-CDH3B4.tar.gz  hadoop-core-jar  mysql-connector-java-5.1.22-bin.jar  是我们这次用到的

 

三、把下载好的文件加载到linux并解压

下载

[grid@h1 ~]$ pwd

/home/grid/

-rwxrw-rw-.  1 grid hadoop 67339212  4 12 2011 hadoop-0.20.2-CDH3B4.tar.gz

-rwxrw-rw-.  1 grid hadoop   832960 11 19 16:06 mysql-connector-java-5.1.22-bin.jar

-rwxrw-rw-.  1 grid hadoop  1543137  4 12 2011 sqoop-1.2.0-CDH3B4.tar.gz

解压包

[grid@h1 ~]$ tar -zxvf hadoop-0.20.2-CDH3B4.tar.gz

[grid@h1 ~]$ tar -zxvf sqoop-1.2.0-CDH3B4.tar.gz

[grid@h1 ~]$ pwd

/home/grid/

drwxr-xr-x. 15 grid hadoop     4096  2 22 2011 hadoop-0.20.2-CDH3B4      解压后目录

-rwxrw-rw-.  1 grid hadoop 67339212  4 12 2011 hadoop-0.20.2-CDH3B4.tar.gz

-rwxrw-rw-.  1 grid hadoop   832960 11 19 16:06 mysql-connector-java-5.1.22-bin.jar

drwxr-xr-x. 11 grid hadoop     4096  2 22 2011 sqoop-1.2.0-CDH3B4          解压后目录

-rwxrw-rw-.  1 grid hadoop  1543137  4 12 2011 sqoop-1.2.0-CDH3B4.tar.gz


 

四、拷贝hadoop-core-0.20.2-CDH3B4.jarmysql-connector-java-5.1.22-bin.jar/home/grid/sqoop-1.2.0-CDH3B4/lib/目录下

[grid@h1 ~]$ cd hadoop-0.20.2-CDH3B4

[grid@h1 hadoop-0.20.2-CDH3B4]$ cp hadoop-core-0.20.2-CDH3B4.jar  /home/grid/sqoop-1.2.0-CDH3B4/lib/

[grid@h1 grid]$ cp mysql-connector-java-5.1.22-bin.jar  /home/grid/sqoop-1.2.0-CDH3B4/lib/

 

五、配置sqoop-1.2.0-CDH3B4/bin/configure-sqoop文件

[grid@h1 conf]$ cd ../bin

[grid@h1 bin]$ pwd

/home/grid/sqoop-1.2.0-CDH3B4/bin

[grid@h1 bin]$ vim configure-sqoop

注释掉hbasezookeeper检查(除非你准备使用HABASEHADOOP上的组件)

# Check: If we can't find our dependencies, give up here.

if [ ! -d "${HADOOP_HOME}" ]; then

  echo "Error: $HADOOP_HOME does not exist!"

  echo 'Please set $HADOOP_HOME to the root of your Hadoop installation.'

  exit 1

fi      只有红色需要修改

#if [ ! -d "${HBASE_HOME}" ]; then

  #echo "Error: $HBASE_HOME does not exist!"

  #echo 'Please set $HBASE_HOME to the root of your HBase installation.'

  #exit 1

#fi

#if [ ! -d "${ZOOKEEPER_HOME}" ]; then

# echo "Error: $ZOOKEEPER_HOME does not exist!"

# echo 'Please set $ZOOKEEPER_HOME to the root of your ZooKeeper installation.'

# exit 1

#fi


 

六、配置所需环境变量

在哪里执行sqoop,就在哪台机器上设置一下

[grid@h1 grid]$ vim .bashrc    添加

export JAVA_HOME=/usr

export JRE_HOME=/usr/java/jdk1.6.0_25/jre

export PATH=/usr/java/jdk1.6.0_25/bin:/home/grid/hadoop-0.20.2/bin:/home/grid/pig-0.9.2/bin:$PATH

export CLASSPATH=./:/usr/java/jdk1.6.0_25/lib:/usr/java/jdk1.6.0_25/jre/lib

export PIG_CLASSPATH=/home/grid/hadoop-0.20.2/conf

export HIVE_HOME=/home/grid/hive-0.8.1

export HIVE_CONF_DIR=$HIVE_HOME/conf

export HADOOP_HOME=/home/grid/hadoop-0.20.2   

作用:让sqoop程序从环境变量里找到hadoop的位置,从而找到hadoop配置文件,知道集群的部署情况

[grid@h1 grid]$ echo $HADOOP_HOME      检查一下没有问题

/home/grid/hadoop-0.20.2


 

七、配置启动HADOOP集群

H1机器  master

[grid@h1 bin]$ pwd

/home/grid/hadoop-0.20.2/bin

[grid@h1 bin]$ ./start-all.sh

starting namenode, logging to /home/grid/hadoop-0.20.2/bin/../logs/hadoop-grid-namenode-h1.out

h2: starting datanode, logging to /home/grid/hadoop-0.20.2/bin/../logs/hadoop-grid-datanode-h2.out

h4: starting datanode, logging to /home/grid/hadoop-0.20.2/bin/../logs/hadoop-grid-datanode-h4.out

h1: starting secondarynamenode, logging to /home/grid/hadoop-0.20.2/bin/../logs/hadoop-grid-secondarynamenode-h1.out

starting jobtracker, logging to /home/grid/hadoop-0.20.2/bin/../logs/hadoop-grid-jobtracker-h1.out

h2: starting tasktracker, logging to /home/grid/hadoop-0.20.2/bin/../logs/hadoop-grid-tasktracker-h2.out

h4: starting tasktracker, logging to /home/grid/hadoop-0.20.2/bin/../logs/hadoop-grid-tasktracker-h4.out

[grid@h1 bin]$ jps

17191 JobTracker

16955 NameNode

17442 Jps

17121 SecondaryNameNode

H2机器  slave

[grid@h2 ~]$ jps

32523 Jps

17188 TaskTracker

13727 HQuorumPeer

17077 DataNode

H4机器  slave

[grid@h4 ~]$ jps

27829 TaskTracker

26875 Jps

17119 DataNode

31083 Jps

11557 HQuorumPeer

[grid@h1 bin]$ ./hadoop dfsadmin –report          检查hadoop集群状态

Configured Capacity: 19865944064 (18.5 GB)

Present Capacity: 8741523456 (8.14 GB)

DFS Remaining: 8726482944 (8.13 GB)

DFS Used: 15040512 (14.34 MB)

DFS Used%: 0.17%

Under replicated blocks: 4

Blocks with corrupt replicas: 0

Missing blocks: 0

-------------------------------------------------

Datanodes available: 2 (2 total, 0 dead)             --2个节点存活无shutdown

Name: 192.168.2.103:50010                                -- slaves  h2

Decommission Status : Normal                             --状态正常

Configured Capacity: 9932972032 (9.25 GB)

DFS Used: 7520256 (7.17 MB)

Non DFS Used: 5447561216 (5.07 GB)

DFS Remaining: 4477890560(4.17 GB)

DFS Used%: 0.08%

DFS Remaining%: 45.08%

Last contact: Fri Dec 14 18:10:11 CST 2012

Name: 192.168.2.105:50010                              -- slaves  h4

Decommission Status : Normal                           --状态正常

Configured Capacity: 9932972032 (9.25 GB)

DFS Used: 7520256 (7.17 MB)

Non DFS Used: 5676859392 (5.29 GB)

DFS Remaining: 4248592384(3.96 GB)

DFS Used%: 0.08%

DFS Remaining%: 42.77%

Last contact: Fri Dec 14 18:10:11 CST 2012

集群正常启动了


 

八、启动mysql,创建leo用户进行sqoop连接

1. 必须启动服务才能操作数据库

数据库端口:3306

Mysqll服务名:MySQL55

Mysql状态:已经启动

创建leo用户

grant all privileges on *.* to 'leo'@'%' identified by 'leo' with grant option;

select * from mysql.user;

flush privileges; 

 

 

九、mysql 中建立sqoop库,test表,添加数据

[grid@h1 bin]$ ping 192.168.2.110                          检查linux for windows 的连接性

PING 192.168.2.110 (192.168.2.110) 56(84) bytes of data.

64 bytes from 192.168.2.110: icmp_seq=1 ttl=64 time=14.5 ms

64 bytes from 192.168.2.110: icmp_seq=2 ttl=64 time=3.43 ms

64 bytes from 192.168.2.110: icmp_seq=3 ttl=64 time=9.68 ms

64 bytes from 192.168.2.110: icmp_seq=4 ttl=64 time=0.549 ms

^C

--- 192.168.2.110 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3630ms

rtt min/avg/max/mdev = 0.549/7.063/14.577/5.453 ms

[grid@h1 grid]$ mysql -h192.168.2.110 -uleo –pleo  使用leo用户登录数据库

命令列表

show  databases;                         显示当前有哪些数据库

create  database  sqoop;           创建sqoop数据库

use  sqoop;                                    只有打开sqoop数据库才能操作哦

create  table  leo1 (user_id  int, user_name  varchar(10),class  int);    创建leo1

insert into leo1 values(1,'leonarding',10);    插入5条记录

insert into leo1 values(2,'wubiao',20);

insert into leo1 values(3,'alan',30);

insert into leo1 values(4,'sun',40);

insert into leo1 values(5,'liyang',50);

show  tables;                                 显示当前数据库中存在哪些表

[grid@h1 grid]$ mysql -h192.168.2.110 -uleo -pleo

Welcome to the MySQL monitor.  Commands end with ; or \g.

Your MySQL connection id is 5

Server version: 5.5.27 MySQL Community Server (GPL)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.

This software comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to modify and redistribute it under the GPL v2 license

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> show databases;

+--------------------+

| Database           |

+--------------------+

| information_schema |

| hive               |

| mysql              |

| performance_schema |

| sakila             |

| test               |

| world              |

+--------------------+

7 rows in set (0.01 sec)

mysql> create database sqoop;             创建sqoop数据库

Query OK, 1 row affected (0.06 sec)

mysql> use sqoop;

Database changed

mysql> show databases;

+--------------------+

| Database           |

+--------------------+

| information_schema |

| hive               |

| mysql              |

| performance_schema |

| sakila             |

sqoop              |                                          sqoop数据库已经创建完毕

| test               |

| world              |

+--------------------+

8 rows in set (0.00 sec)

mysql> create  table  leo1 (user_id  int, user_name  varchar(10),class  int);   创建leo1

Query OK, 0 rows affected (1.82 sec)

mysql> insert into leo1 values(1,'leonarding',10);

Query OK, 1 row affected (0.12 sec)

mysql> insert into leo1 values(2,'wubiao',20);

Query OK, 1 row affected (0.06 sec)

mysql> insert into leo1 values(3,'alan',30);

Query OK, 1 row affected (1.02 sec)

mysql> insert into leo1 values(4,'sun',40);

Query OK, 1 row affected (0.05 sec)

mysql> insert into leo1 values(5,'liyang',50);

Query OK, 1 row affected (0.05 sec)

mysql> show tables;                               sqoop数据库中就有一个leo1

+-----------------+

| Tables_in_sqoop |

+-----------------+

| leo1            |

+-----------------+

1 row in set (0.00 sec)

mysql> select * from leo1;                     表中有5行数据

+---------+------------+-------+

| user_id | user_name  | class |

+---------+------------+-------+

|       1 | leonarding |    10 |

|       2 | wubiao     |    20 |

|       3 | alan       |    30 |

|       4 | sun        |    40 |

|       5 | liyang     |    50 |

+---------+------------+-------+

5 rows in set (0.00 sec)

 

十、测试sqoop连接性

[grid@h1 grid]$ sqoop-1.2.0-CDH3B4/bin/sqoop list-databases --connect jdbc:mysql://192.168.2.110:3306/ --username leo --password leo              

参数解释:

--connect jdbc:mysql://192.168.2.110:3306/  指定mysql数据库主机名和端口号

--username leo                         数据库用户名

--password leo                          数据库密码

12/12/15 00:15:56 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.                  这里提示密码复杂度低安全性差

12/12/15 00:16:16 INFO manager.MySQLManager: Executing SQL statement: SHOW DATABASES                                                                             显示所有数据库

information_schema

hive

mysql

performance_schema

sakila

sqoop                                             这是我们刚才建立的数据库

test

world

linux上通过sqoop可以正常连接到mysql数据库中

 

十一、从mysql中导出数据->SQOOP->导入HDFS文件系统

[grid@h1 grid]$ sqoop-1.2.0-CDH3B4/bin/sqoop import --connect jdbc:mysql://192.168.2.110:3306/sqoop --username leo --password leo --table leo1 -m 1

参数解释:

--connect jdbc:mysql://192.168.2.110:3306/sqoop     指定mysql数据库主机名和端口号和数据库名

--username leo                                 指定数据库用户名

--password leo                                 指定数据库密码

--table leo1                                    mysql中即将导出的表

-m 1                             指定启动一个map进程,如果表很大,可以启动多个map进程

导入路径                         默认/user/grid/leo1/part-m-00000

12/12/15 00:36:30 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.

12/12/15 00:36:30 INFO tool.CodeGenTool: Beginning code generation

12/12/15 00:36:30 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `leo1` AS t LIMIT 1

12/12/15 00:36:30 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `leo1` AS t LIMIT 1     访问的表

12/12/15 00:36:31 INFO orm.CompilationManager: HADOOP_HOME is /home/grid/hadoop-0.20.2/bin/..

12/12/15 00:36:31 INFO orm.CompilationManager: Found hadoop core jar at: /home/grid/hadoop-0.20.2/bin/../hadoop-0.20.2-core.jar       找到hadoop核心jar

12/12/15 00:36:38 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-grid/compile/8d5e146de1ec99ef7d7ea6789b6b4441/leo1.jar  写入jar

12/12/15 00:36:39 WARN manager.MySQLManager: It looks like you are importing from mysql.

12/12/15 00:36:39 WARN manager.MySQLManager: This transfer can be faster! Use the --direct

12/12/15 00:36:39 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.

12/12/15 00:36:39 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)

12/12/15 00:36:39 INFO mapreduce.ImportJobBase: Beginning import of leo1

12/12/15 00:36:43 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `leo1` AS t LIMIT 1

12/12/15 00:37:05 INFO mapred.JobClient: Running job: job_201212141802_0001    作业编号(开始)

12/12/15 00:37:07 INFO mapred.JobClient:  map 0% reduce 0%

12/12/15 00:39:27 INFO mapred.JobClient:  map 100% reduce 0%               

12/12/15 00:39:29 INFO mapred.JobClient: Job complete: job_201212141802_0001   作业编号(完成)

12/12/15 00:39:29 INFO mapred.JobClient: Counters: 5                          

12/12/15 00:39:29 INFO mapred.JobClient:   Job Counters

12/12/15 00:39:29 INFO mapred.JobClient:     Launched map tasks=1            启动一个map进程

12/12/15 00:39:29 INFO mapred.JobClient:   FileSystemCounters

12/12/15 00:39:29 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=59

12/12/15 00:39:29 INFO mapred.JobClient:   Map-Reduce Framework

12/12/15 00:39:29 INFO mapred.JobClient:     Map input records=5           map导入5条记录

12/12/15 00:39:29 INFO mapred.JobClient:     Spilled Records=0              无溢出

12/12/15 00:39:29 INFO mapred.JobClient:     Map output records=5          map导出5条记录

12/12/15 00:39:29 INFO mapreduce.ImportJobBase: Transferred 59 bytes in 165.1492 seconds (0.3573 bytes/sec)                                    导出59个字节,用时165

12/12/15 00:39:29 INFO mapreduce.ImportJobBase: Retrieved 5 records.         导入HDFS5

我们在HDFS中检查一下

[grid@h1 grid]$ hadoop dfs -ls

Found 5 items

drwxr-xr-x   - grid supergroup          0 2012-11-02 20:55 /user/grid/in

drwxr-xr-x   - grid supergroup          0 2012-12-15 00:39 /user/grid/leo1

drwxr-xr-x   - grid supergroup          0 2012-10-12 12:15 /user/grid/out1

drwxr-xr-x   - grid supergroup          0 2012-10-13 18:02 /user/grid/out2

drwxr-xr-x   - grid supergroup          0 2012-11-03 21:28 /user/grid/pig

[grid@h1 grid]$ hadoop dfs -ls leo1

Found 2 items

drwxr-xr-x   - grid supergroup          0 2012-12-15 00:37 /user/grid/leo1/_logs

-rw-r--r--   2 grid supergroup         59 2012-12-15 00:39 /user/grid/leo1/part-m-00000

[grid@h1 grid]$ hadoop dfs -cat leo1/part-m-00000

1,leonarding,10

2,wubiao,20

3,alan,30

4,sun,40

5,liyang,50

到此我们导入和验证完毕,完成了从mysql数据库成功导入HDFS文件系统

 

十二、从HDFS中导出数据->SQOOP->导入MYSQL数据库

[grid@h1 grid]$ sqoop-1.2.0-CDH3B4/bin/sqoop export --connect jdbc:mysql://192.168.2.110:3306/sqoop --username leo --password leo --table leo1 --export-dir hdfs://h1:9000/user/grid/leo1/part-m-00000 -m 1

参数解释:

--connect jdbc:mysql://192.168.2.110:3306/sqoop     指定mysql数据库主机名和端口号和数据库名

--username leo                                 指定数据库用户名

--password leo                                  指定数据库密码

--table leo1                                     mysql即将导入的表

-m 1   

--export-dir hdfs://h1:9000/user/grid/leo1/part-m-00000  HDFS导出文件路径

12/12/15 01:10:01 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.

12/12/15 01:10:01 INFO tool.CodeGenTool: Beginning code generation

12/12/15 01:10:02 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `leo1` AS t LIMIT 1

12/12/15 01:10:02 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `leo1` AS t LIMIT 1

12/12/15 01:10:02 INFO orm.CompilationManager: HADOOP_HOME is /home/grid/hadoop-0.20.2/bin/..

12/12/15 01:10:02 INFO orm.CompilationManager: Found hadoop core jar at: /home/grid/hadoop-0.20.2/bin/../hadoop-0.20.2-core.jar

12/12/15 01:10:03 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-grid/compile/d3851be739254c3d3ae5e0e71da52f5c/leo1.jar

12/12/15 01:10:03 INFO mapreduce.ExportJobBase: Beginning export of leo1    始导入

12/12/15 01:10:04 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `leo1` AS t LIMIT 1  导入到哪张表

12/12/15 01:10:04 INFO input.FileInputFormat: Total input paths to process : 1

12/12/15 01:10:04 INFO input.FileInputFormat: Total input paths to process : 1

12/12/15 01:10:04 INFO mapred.JobClient: Running job: job_201212141802_0002   作业编号(开始)

12/12/15 01:10:05 INFO mapred.JobClient:  map 0% reduce 0%

12/12/15 01:12:23 INFO mapred.JobClient:  map 100% reduce 0%

12/12/15 01:12:25 INFO mapred.JobClient: Job complete: job_201212141802_0002  作业编号(完成)

12/12/15 01:12:26 INFO mapred.JobClient: Counters: 6

12/12/15 01:12:26 INFO mapred.JobClient:   Job Counters

12/12/15 01:12:26 INFO mapred.JobClient:     Rack-local map tasks=1   

12/12/15 01:12:26 INFO mapred.JobClient:     Launched map tasks=1         启动一个map进程

12/12/15 01:12:26 INFO mapred.JobClient:   FileSystemCounters

12/12/15 01:12:26 INFO mapred.JobClient:     HDFS_BYTES_READ=65

12/12/15 01:12:26 INFO mapred.JobClient:   Map-Reduce Framework

12/12/15 01:12:26 INFO mapred.JobClient:     Map input records=5

12/12/15 01:12:26 INFO mapred.JobClient:     Spilled Records=0

12/12/15 01:12:26 INFO mapred.JobClient:     Map output records=5

12/12/15 01:12:26 INFO mapreduce.ExportJobBase: Transferred 65 bytes in 141.9968 seconds (0.4578 bytes/sec)                                   导出65个字节,用时141

12/12/15 01:12:26 INFO mapreduce.ExportJobBase: Exported 5 records.

我们在MYSQL中检查一下,已经成功导入到mysql,现在是10条记录比原来多了5

mysql> select * from leo1;

+---------+------------+-------+

| user_id | user_name  | class |

+---------+------------+-------+

|       1 | leonarding |    10 |

|       2 | wubiao     |    20 |

|       3 | alan       |    30 |

|       4 | sun        |    40 |

|       5 | liyang     |    50 |

|       1 | leonarding |    10 |

|       2 | wubiao     |    20 |

|       3 | alan       |    30 |

|       4 | sun        |    40 |

|       5 | liyang     |    50 |

+---------+------------+-------+

10 rows in set (0.00 sec)

到此我们导出和验证完毕,完成从HDFS文件系统成功导出到mysql数据库



 本文转自 leonarding151CTO博客,原文链接:http://blog.51cto.com/leonarding/1092764,如需转载请自行联系原作者



版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
数据库实验——嵌入式Mysql
数据库实验——嵌入式Mysql
12 0
MYSQL数据库SQL语句练习实验(3)
MYSQL数据库SQL语句练习实验(3)
15 0
MYSQL数据库SQL语句练习实验(2)
MYSQL数据库SQL语句练习实验(2)
31 0
MYSQL数据库SQL语句练习实验(1)
MYSQL数据库SQL语句练习实验(1)
29 0
开学实验里要用到mysql,忘记基本的select语句怎么玩啦?补救来啦(2)
开学实验里要用到mysql,忘记基本的select语句怎么玩啦?补救来啦(2)
37 0
开学实验里要用到mysql,忘记基本的select语句怎么玩啦?补救来啦(1)
开学实验里要用到mysql,忘记基本的select语句怎么玩啦?补救来啦(1)
34 0
四十、centos安装sqoop(使用Sqoop完成MySQL和HDFS之间的数据互导)
四十、centos安装sqoop(使用Sqoop完成MySQL和HDFS之间的数据互导)
148 0
HIVE HDFS 同步到MYSQL里,在HIVE里存为目录的分区键的如何同步呢?
请教下 ,HIVE HDFS 同步到MYSQL的时候,如果在源端HIVE里是分区表,分区字段要这么同步到目标端MYSQL呢
64 0
通过Sqoop实现Mysql / Oracle 与HDFS / Hbase互导数据
下文将重点说明通过Sqoop实现Mysql与HDFS互导数据,Mysql与Hbase,Oracle与Hbase的互导最后给出命令。 一、Mysql与HDFS互导数据 环境: 宿主机器操作系统为Win7,Mysql安装在宿主机上,宿主机地址为192.168.66.96 3台虚拟机操作系统为Ubuntu-12.04.1-32位 三台虚拟机已成功安装hadoop,并实现免密钥互访,配hosts为: 192.168.66.91 masternode 192.168.66.92 slavenode1 192.168.66.93 slavenode2 /etc/profile已配置好必备环境变量HADOO
168 0
文章
问答
文章排行榜
最热
最新
相关电子书
更多
让 MySQL 原生分布式触手可及
立即下载
好的 MySQL 兼容可以做到什么程度
立即下载
云数据库RDS MySQL从入门到高阶
立即下载