使用Sqoop从Mysql向云HBase同步数据

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具。本文介绍如何使用sqoop将数据从Mysql导入到HBase。从成本的角度考虑,针对没有hadoop集群的用户,重点介绍单机运行sqoop的配置和参数。

Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具。本文介绍如何使用sqoop将数据从Mysql导入到HBase。从成本的角度考虑,针对没有hadoop集群的用户,重点介绍单机运行sqoop的配置和参数。

安装

要完成从Mysql向HBase导入数据的任务,需要安装和配置的软件包括hadoop,sqoop,mysql-connector和HBase。我们针对单机运行sqoop的情况提供了四合一的安装包简化安装流程。如果是在hadoop集群上运行sqoop,可以参考Sqoop官方文档进行配置。
以下介绍单机版的安装流程。

1 下载安装包。把文件放在~目录。

cd ~
wget http://public-hbase.oss-cn-hangzhou.aliyuncs.com/installpackage/sqoop-all.tar.gz

2 解压文件:解压,进入解压后的目录sqoop-all。

tar -xzvf sqoop-all.tar.gz
cd scoop-all

3 设置环境变量。

cp sqoop-env.sh /etc/profile.d; source /etc/profile

4 修改hbase-1.1.9/conf/hbase-site.xml文件,添加集群的 ZK 地址。可参考云HBase帮助文档

准备工作

1 设置ip白名单。需要把运行sqoop的机器ip添加到云HBase的ip白名单中。如果Mysql是云上的RDS,也需要修改RDS的ip白名单。总之就是保证这台机器能够访问mysql和HBase。
2 确保目标表存在。如果不存在需要先建表。

运行

安装完成并配置好ip白名单之后,就可以运行sqoop进行数据导入了。

命令示例

 以下是单机运行sqoop的命令示例:

sqoop import -Dmapreduce.local.map.tasks.maximum=8 --connect jdbc:mysql://$mysqlURL:3306/$database --table $table --hbase-table $hbaseTable --column-family $columnFamily --hbase-row-key $mysqlColumn --username $mysqlUser -m 8 -P

常用参数说明

--connect JDBC连接字符串
--table 要导入的mysql表名
--columns 要导入的列
--where 过滤条件
--hbase-table hbase表名
--column-family hbase列族
--hbase-row-key 用来做HBase rowkey的mysql列名
--username mysql用户名
-m map个数,默认为4
此外,对于单机运行,还需要指定mapreduce.local.map.tasks.maximum参数,表示并行执行的最大map个数,否则默认为1,map就变成串行执行的了。也可以根据需要调整其他hadoop参数。
sqoop import的其他参数可参考[sqoop-import文档](
http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_literal_sqoop_import_literal)

公网运行

一般来说,我们不建议在公网执行数据同步任务,因为可能会有潜在的安全隐患以及绕行公网带来的延时增大、性能问题等。但是考虑到开发测试阶段的便利,HBase也提供了公网访问的功能,我们可以通过配置HBase公网访问实现在公网运行数据同步任务。

开通公网访问

开通公网访问的方法参见公网访问方案
公网访问需要使用阿里云定制的客户端,具体的下载和配置参见使用 Shell 访问
完成后,如果能通过hbase shell访问,就说明这一步的配置已经成功了。

修改sqoop环境变量

sqoop环境变量中和HBase相关的环境变量主要是HBASE_HOME,需要把这个变量改成阿里云定制客户端所在的目录。运行vi sqoop-en.sh,修改如下内容:

#export HBASE_HOME=~/sqoop-all/hbase-1.1.9 注释这一行,替换成:
export HBASE_HOME=~/sqoop-all/alihbase-1.1.4 #改成阿里云客户端所在的目录

然后

cp sqoop-env.sh /etc/profile.d; source /etc/profile

环境变量生效之后,就可以在公网执行导入操作了。

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
2月前
|
安全 关系型数据库 MySQL
如何将数据从MySQL同步到其他系统
【10月更文挑战第17天】如何将数据从MySQL同步到其他系统
258 0
|
2月前
|
SQL 前端开发 关系型数据库
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
60 0
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
|
2月前
|
关系型数据库 MySQL 数据库
mysql 里创建表并插入数据
【10月更文挑战第5天】
150 1
|
2月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
54 3
|
8天前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
37 6
|
1月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
142 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
19天前
|
SQL 关系型数据库 MySQL
mysql分页读取数据重复问题
在服务端开发中,与MySQL数据库进行数据交互时,常因数据量大、网络延迟等因素需分页读取数据。文章介绍了使用`limit`和`offset`参数实现分页的方法,并针对分页过程中可能出现的数据重复问题进行了详细分析,提出了利用时间戳或确保排序规则绝对性等解决方案。
|
25天前
|
关系型数据库 MySQL 数据库
GBase 数据库如何像MYSQL一样存放多行数据
GBase 数据库如何像MYSQL一样存放多行数据
|
1月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
64 14
|
1月前
|
缓存 监控 Shell
如何使用 HBase Shell 进行数据的实时监控和备份?
如何使用 HBase Shell 进行数据的实时监控和备份?
下一篇
DataWorks