Reverse反转算法+斐波那契数列递归+Reverse反转单链表算法--C++实现

简介:

Reverse反转算法

复制代码
 1 #include <iostream>
 2  3 using namespace std;
 4 //交换的函数  5 void replaced(int &a,int &b){
 6 int t = a;
 7 a = b;
 8 b = t;
 9 }
10 //反转 11 void reversed(int a[],int length){
12 int left = 0;
13 int right = length - 1;
14 while (left < right) {
15  replaced(a[left], a[right]);
16 left++;
17 right--;
18  }
19 }
20 void output(int a[],int length)
21 {
22 for (int i = 0; i<length; i++) {
23 cout << a[i] << " ";
24  }
25 }
26 int main()
27 {
28 int a[] = {1,2,3,4,5,6,7,8,9};
29 output(a, 9);
30 cout << endl;
31 reversed(a, 9);
32 output(a, 9);
33 }
复制代码

斐波那契数列

复制代码
 1 #include <iostream>
 2  3 using namespace std;
 4  5 //斐波那契数列  6 int qiebona(int a)
 7 {
 8 //也可以用if语句  9 switch (a) {
10 case 1:
11 case 2:
12 return a;
13 break;
14 15 default:
16 return qiebona(a-1)+qiebona(a-2);
17 break;
18  }
19 }
20 int main()
21 {
22 //验证斐波那契函数 23 cout << qiebona(1) << endl;
24 //然后打印前n个数的斐波那契数列 25 for (int i = 1; i <= 10; i++) {
26 cout << qiebona(i) << " ";
27  }
28 return 0;
29 }
复制代码

Reverse反转单链表算法

复制代码
 1 #include <iostream>
 2  3 using namespace std;
 4 //1首先这个数据节点中只有一个指针作为成员数据,所以这是一个单链表的节点结构  5 struct node{
 6 int payload;
 7 node* next;
 8 };
 9 //2对于一个长的单链表的操作,我们只能这个长链表的第一个节点或者说是第一个指针指向的节点开始操作 10 node* reversed(node* first){
11 //3如果链表为空或者只有一个,那就返回它自己呗 12 if (first->next == nullptr || first == nullptr) {
13 return first;
14 }//4如果有下一个实例,就
15 //5获取下一个实例 16 node* second = first -> next;
17 //这里就是递归, 18 node* new_head = reversed(second);
19 /*6 将下一个节点内部指针的方向反转,但是在反转之前,也要获取这下一个节点原来指向的下下个节点,也就是说,在这个操作之前,要在通过下一个节点获取下下一个节点.
20  假设在前一步加:node* third = second->next;但是这个简单的思路有局限性,当链表很长的时候,后面会重复这个获取下一个节点的过程,这样肯定是不明智的,因为链表的个数不确定,你就不知道要写多少代码,所以最好的办法就是通过递归重复执行前面相同的步骤(即算法)*/ 21 second -> next = first;
22 first -> next = nullptr;
23 return new_head;//7由于递归的特性,最后的return返回值会往前传递到最前面 24 }
复制代码

相关文章
|
6天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
25 2
|
14天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
12天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
70 2
|
3月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
62 1
|
3月前
|
存储 算法 C++
高精度算法(加、减、乘、除,使用c++实现)
高精度算法(加、减、乘、除,使用c++实现)
891 0
高精度算法(加、减、乘、除,使用c++实现)
|
5天前
|
C++ 芯片
【C++面向对象——类与对象】Computer类(头歌实践教学平台习题)【合集】
声明一个简单的Computer类,含有数据成员芯片(cpu)、内存(ram)、光驱(cdrom)等等,以及两个公有成员函数run、stop。只能在类的内部访问。这是一种数据隐藏的机制,用于保护类的数据不被外部随意修改。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。成员可以在派生类(继承该类的子类)中访问。成员,在类的外部不能直接访问。可以在类的外部直接访问。为了完成本关任务,你需要掌握。
43 18
|
5天前
|
存储 编译器 数据安全/隐私保护
【C++面向对象——类与对象】CPU类(头歌实践教学平台习题)【合集】
声明一个CPU类,包含等级(rank)、频率(frequency)、电压(voltage)等属性,以及两个公有成员函数run、stop。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。​ 相关知识 类的声明和使用。 类的声明和对象的声明。 构造函数和析构函数的执行。 一、类的声明和使用 1.类的声明基础 在C++中,类是创建对象的蓝图。类的声明定义了类的成员,包括数据成员(变量)和成员函数(方法)。一个简单的类声明示例如下: classMyClass{ public: int
32 13
|
5天前
|
编译器 数据安全/隐私保护 C++
【C++面向对象——继承与派生】派生类的应用(头歌实践教学平台习题)【合集】
本实验旨在学习类的继承关系、不同继承方式下的访问控制及利用虚基类解决二义性问题。主要内容包括: 1. **类的继承关系基础概念**:介绍继承的定义及声明派生类的语法。 2. **不同继承方式下对基类成员的访问控制**:详细说明`public`、`private`和`protected`继承方式对基类成员的访问权限影响。 3. **利用虚基类解决二义性问题**:解释多继承中可能出现的二义性及其解决方案——虚基类。 实验任务要求从`people`类派生出`student`、`teacher`、`graduate`和`TA`类,添加特定属性并测试这些类的功能。最终通过创建教师和助教实例,验证代码
23 5
|
5天前
|
存储 算法 搜索推荐
【C++面向对象——群体类和群体数据的组织】实现含排序功能的数组类(头歌实践教学平台习题)【合集】
1. **相关排序和查找算法的原理**:介绍直接插入排序、直接选择排序、冒泡排序和顺序查找的基本原理及其实现代码。 2. **C++ 类与成员函数的定义**:讲解如何定义`Array`类,包括类的声明和实现,以及成员函数的定义与调用。 3. **数组作为类的成员变量的处理**:探讨内存管理和正确访问数组元素的方法,确保在类中正确使用动态分配的数组。 4. **函数参数传递与返回值处理**:解释排序和查找函数的参数传递方式及返回值处理,确保函数功能正确实现。 通过掌握这些知识,可以顺利地将排序和查找算法封装到`Array`类中,并进行测试验证。编程要求是在右侧编辑器补充代码以实现三种排序算法
20 5