数据结构与算法学习九:学习递归。递归的经典实例:打印问题、阶乘问题、递归-迷宫问题、八皇后问题

简介: 本文详细介绍了递归的概念、重要规则、形式,并展示了递归在解决打印问题、阶乘问题、迷宫问题和八皇后问题等经典实例中的应用。

前言

  • 先说一下递归算法的重要性,后面的快速排序、归并排序都会用到递归。可见其重要性
  • 这里学的时候,自我感觉有点难,逻辑有点混乱,可以先学习一遍,然后到了后面用到的时候,再来学习一遍。

一、递归

2.1 递归简单介绍

简单的说:
递归就是方法自己调用自己,每次调用时传入不同的变量。
递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。

2.2 重要规则

  1. 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
  2. 方法的局部变量是独立的,不会相互影响, 比如n变量
  3. 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.
  4. 递归必须向退出递归的条件逼近,否则就是无限递归,出现StackOverflowError,死龟了
  5. 当一个方法执行完毕,或者遇到return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕。

2.3 递归形式

递归就是函数调用自己本身,但是要加上 必须的条件,以免变成 死龟

形式如下


public void func(int n){
    if(condition){

    }
    func(n-1);
}

2.4 递归能解决的问题

  1. 各种数学问题如: 8皇后问题 , 汉诺塔, 阶乘问题, 迷宫问题, 球和篮子的问题(google编程大赛)
  2. 各种算法中也会使用到递归,比如 快排,归并排序,二分查找,分治算法 等.
  3. 将用栈解决的问题–>第归代码比较简洁

二、打印问题

2.1 介绍

通过打印来了解递归

2.2 代码

/**
 * 打印问题.
 * 当 n 为 4时 输出的顺序:n=2 n=3 n=4
 * @param n
 */
 public static void test01(int n) {
    if (n > 2) {
        test01(n - 1);   // 如果为 + 时,会成为 栈溢出,报错:java.lang.StackOverflowError
    }
    System.out.println("n=" + n);
}

2.3 代码测试

当传入 4 时,打印的顺序时是:
在这里插入图片描述

2.4 思路分析和图解

在这里插入图片描述
可以看出 每一次调用都要先走进入,走到最后,在一步步走出来,进行打印。

三、阶乘问题

3.1 介绍

用递归实现阶乘问题,如 4!= 4_3_2*1

3.2 代码实现

/**
 * 阶乘问题
 *
 * @param n
 * @return
 */
public static int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n*factorial(n - 1); //n=3时, f(3) = 3*f(2)=3*2*f(1)= 3*2*1, 依次类推
    }
}

3.3 测试与分析

当传入 4 时,factorial(4) = 4_factorial(3)
factorial(3) = 3_factorial(2)
factorial(2) = 2_factorial(1)
factorial(1) = 1
所以 最终就为 factorial(4)= 4_3_2_1=24.

四、递归-迷宫问题

4.1 问题介绍

上图看介绍:初始化二维数组为地图,map[8][7],1代表红色的墙。小球初始位置map[1][1] ,找到最终位置map[6][5]。
在这里插入图片描述

4.2 代码实现

package com.feng.ch08_recursion;

/*
 * 递归解决迷宫问题
 * 从 map[1][1] 找到 map[6][5]
 * 开始时,只有递归,没有回溯,
 * 查看回溯请求:
 *   1、map[1][2] = 1;map[2][2] = 1; ,在运行就看到了回溯,都设置为了 3
 * */
public class R2_MiGong {
    public static void main(String[] args) {
        // 先创建一个二维数组,模拟迷宫
        // 地图
        int[][] map = new int[8][7];
        // 使用 1 表示墙
        // 上下全部置为1
        for (int i = 0; i < 7; i++) {
            map[0][i] = 1;
            map[7][i] = 1;
        }
        // 左右置为 2
        for (int i = 0; i < 8; i++) {
            map[i][0] = 1;
            map[i][6] = 1;
        }

        // 设置挡板 ,用 1 表示
        map[3][1] = 1;
        map[3][2] = 1;
//        map[1][2] = 1;
//        map[2][2] = 1;

        // 输出  初始化的地图
        for (int i = 0; i < map.length; i++) {
            for (int j = 0; j < map[i].length; j++) {
                System.out.printf("%d\t", map[i][j]);
            }
            System.out.println();
        }

        // 使用  递归回溯  给小球找路
        setWay(map, 1, 1);

        // 输出 递归后的地图
        System.out.println();
        for (int i = 0; i < map.length; i++) {
            for (int j = 0; j < map[i].length; j++) {
                System.out.printf("%d\t", map[i][j]);
            }
            System.out.println();
        }
    }

    // 使用  递归回溯  来给小球找路
    /*
     *
     * 说明:
     * 1、map表示地图
     * 2、i, j 表示从地图的哪个位置开始出发 ,(1 , 1);
     * 3、如果小球能到 map[6][5] 位置,则说明通路 找到。
     * 4、约定: 当 map[i][j] 为0 表示该点没有走过; 当为 1 表示墙;2 表示通路可以走; 3 表示该点已经走过。但是走不通
     * 5、在走迷宫时,需要确定一个策略(方法) 下-》右-》上-》左 ,
     * 如果该点走不通,再 回溯
     *
     * @param map 表示地图
     * @param i   从哪个位置开始找
     * @param j
     * @return 如果找到通路,就返回true, 否则返回false
     * */
    public static boolean setWay(int[][] map, int i, int j) {
        if (map[6][5] == 2) {       //  递归的条件
            return true;
        } else {
            if (map[i][j] == 0) {  // 如果当前这个点还没走过
                // 按照策略 下-》右-》上-》左  走
                map[i][j] = 2; // 假定改变是可以走通的
                if (setWay(map, i + 1, j)) { // 向下走
                    System.out.println("走过i=" + (i + 1) + ", j=" + j);
                    return true;
                } else if (setWay(map, i, j + 1)) {  // 向右走
                    System.out.println("走过i=" + i + ", j=" + (j + 1));
                    return true;
                } else if (setWay(map, i - 1, j)) {  // 向上走
                    System.out.println("走过i=" + (i - 1) + ", j=" + j);
                    return true;
                } else if (setWay(map, i, j - 1)) {  // 向左走
                    System.out.println("走过i=" + i + ", j=" + (j - 1));
                    return true;
                } else {
                    map[i][j] = 3;
                    return false;
                }
            } else { // 如果 map[i][j] !=0, 可能是 1, 2, 3
                return false;
            }
        }
    }
}

4.2 测试结果

在这里插入图片描述

五、八皇后问题

5.1 问题介绍

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法

5.2 思路分析

  1. 第一个皇后先放第一行第一列
  2. 第二个皇后放在第二行第一列、然后判断是否OK, 如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适
  3. 继续第三个皇后,还是第一列、第二列……直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
  4. 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.
  5. 然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤 【示意图】

说明:
理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题. arr[8] = {0 , 4, 7, 5, 2, 6, 1, 3} //对应arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第i+1个皇后,放在第i+1行的第val+1列

5.3 代码实现

package com.feng.ch08_recursion;

public class R3_Queue8 {

    // 定义 一个max 表示共有多少个黄后
    int max = 8;
    // 定义数组 array ,保存皇后放置位置的结果,比如 arr = {0 ,4 ,7, 5, 2, 6, 1, 3}
    int[] array = new int[max];
    static int count = 0;
    static int judgeCount = 0;

    public static void main(String[] args) {
        R3_Queue8 queue8 = new R3_Queue8();
        queue8.check(0);

        System.out.printf("一共有%d种解法\n", count);
        System.out.printf("一共判断冲突的次数%d次", judgeCount); // 1.5w
    }

    /*
     * 编写一个方法, 放置第 n 个皇后
     * 特别注意: check 是每一次 递归时,进入到 check中都有 for (int i = 0; i<max; i++) , 因此 会有回溯
     * */
    public void check(int n) {
        if(n == max) {  //n = 8 , 其实8个皇后就既然放好
            print();
            return;
        }

        // 依次放入皇后,并判断是否冲突
        for(int i = 0; i < max; i++) {
            // 先把当前这个皇后 n ,放到改行的第 1 列
            array[n] = i;
            // 判断当放置 第 n 个皇后到 i 列,是否冲突
            if (judge(n)) {
                // 接着放 n+1 个皇后,即开始递归
                check(n + 1);
            }
            /*
             * 如果冲突,就继续执行 array[n] = i; 即将第 n 个皇后,放置在本行的 后移的一个位置
             * */
        }
    }

    // 查看当我们放置第 n 个皇后,就去检测该皇后是否和前面已经摆放的皇后冲突
    /*
     * Math.abs() : 求绝对值的方法
     *
     * @param n 表示第 n 个皇后
     * @return
     * */
    private boolean judge(int n) {
        judgeCount++;
        for (int i = 0; i < n; i++) {
            /*
             * 说明:
             * 1、array[i] == array[n] : 表示判断 第 n 个皇后是否和前面的 n-1 个皇后在同一列
             * 2、Math.abs(n - i) == Math.abs(array[n] - array[i]) :
             * */
            if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) { // 如果为 true,则为同一列
                return false;
            }
        }
        return true;
    }

    // 写一个方法,可以将皇后摆放的位置输出
    private void print() {
        count++;
        for (int i = 0; i < array.length; i++) {
            System.out.print(array[i] + " ");
        }
        System.out.println();
    }
}

5.4 测试结果

在这里插入图片描述

相关文章
|
2天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1517 4
|
29天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
5天前
|
人工智能 Rust Java
10月更文挑战赛火热启动,坚持热爱坚持创作!
开发者社区10月更文挑战,寻找热爱技术内容创作的你,欢迎来创作!
492 19
|
2天前
|
存储 SQL 关系型数据库
彻底搞懂InnoDB的MVCC多版本并发控制
本文详细介绍了InnoDB存储引擎中的两种并发控制方法:MVCC(多版本并发控制)和LBCC(基于锁的并发控制)。MVCC通过记录版本信息和使用快照读取机制,实现了高并发下的读写操作,而LBCC则通过加锁机制控制并发访问。文章深入探讨了MVCC的工作原理,包括插入、删除、修改流程及查询过程中的快照读取机制。通过多个案例演示了不同隔离级别下MVCC的具体表现,并解释了事务ID的分配和管理方式。最后,对比了四种隔离级别的性能特点,帮助读者理解如何根据具体需求选择合适的隔离级别以优化数据库性能。
179 1
|
8天前
|
JSON 自然语言处理 数据管理
阿里云百炼产品月刊【2024年9月】
阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
阿里云百炼产品月刊【2024年9月】
|
21天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
9天前
|
Linux 虚拟化 开发者
一键将CentOs的yum源更换为国内阿里yum源
一键将CentOs的yum源更换为国内阿里yum源
448 5
|
7天前
|
存储 人工智能 搜索推荐
数据治理,是时候打破刻板印象了
瓴羊智能数据建设与治理产品Datapin全面升级,可演进扩展的数据架构体系为企业数据治理预留发展空间,推出敏捷版用以解决企业数据量不大但需构建数据的场景问题,基于大模型打造的DataAgent更是为企业用好数据资产提供了便利。
314 2
|
23天前
|
人工智能 IDE 程序员
期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟
在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
|
25天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2608 22
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析