基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究(matlab代码)

简介: 基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究(matlab代码)

1 主要内容

程序完全复现文献《A Distributed Dual Consensus ADMM Based on Partition for DC-DOPF with Carbon Emission Trading》,建立了一个考虑碳排放交易的最优模型,首先,对测试系统(6节点或者30节点或者118节点系统)进行了分区,以便后续ADMM算法的应用,其次,构建了DC-DOPF的最优潮流模型作为主要应用场景,以发电+买卖排放配额费用之和为目标函数,考虑碳排放约束、潮流约束以及耦合约束等约束条件,程序考虑了负荷需求响应和碳排放交易,从而符合目前低碳调度的研究热点,算法方面采用ADMM算法,也就是交替方向乘子法,更加创新,而且求解的效果更好,代码质量非常高,保姆级的注释以及人性化的模块子程序,所有数据均明确可靠来源,非常方便学习!

  • 目标函数

  • 计算步骤

  • 节点系统

程序默认节点系统为118节点系统,代码如下:

FileName = 'SCUC_dat/DDOPF118.txt'; %Corresponding to the 118-bus system in literature [7];对应文献[7]中的118-bus system
可以通过修改节点系统名称来验证其他节点(6节点或者30节点)系统模型,程序已经内置了这部分代码,可以通过取消注释即可实现。
%             FileName = 'SCUC_dat/SCUC6.txt';    %Corresponding to the 6-bus System;对应文中6bus例子
%             FileName = 'SCUC_dat/SCUC30.txt'; %Corresponding to the 30-bus System;对应文中30bus例子
%             FileName = 'SCUC_dat/SCUC6-2.txt';  %Corresponding to the 6-bus System in literature [7];对应文献[7]中的6-bus system
%             FileName = 'SCUC_dat/SCUC1062-2.txt';  %Corresponding to the 1062-bus System;对应文中1062-bus例子
%             FileName = 'SCUC_dat/RTS48.txt'; %Corresponding to the RTS-48 bus system.The test system can obtain from [44];对应文中RTS0-48 bus例子


2 部分代码

if isequal(k,1) %第一次形成p_t并记下对应的区间即可
                            p_t_index = []; %存储p_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引
                            seta_t_index = []; %存储seta_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引
                            for i = 1:size(allNodes,1)
                                bus_sequence_index = find(ismember(SCUC_data.busUnits.bus_sequence,allNodes(i,1))==1); %allNodes(i,1)在SCUC_data.busUnits.bus_sequence上的索引
                                P_start_index = (PbusUnitsNumber(i,1) - PbusUnitsNumber(1,1) + i - 1); %allNodes(i,1)对应变量P前面的所有变量P和θ的总数量
                                Seta_start_index = (PbusUnitsNumber(i+1,1) - PbusUnitsNumber(1,1) + i - 1); %allNodes(i,1)对应变量θ前面的所有变量P和θ的总数量
                                if ~isempty(bus_sequence_index) %The bus with unit. 节点上有发电机
                                    for j = 1:size(SCUC_data.busUnits.unitIndex{bus_sequence_index,1},1)
                                        p_t(units_number,:) = XJ(P_start_index*T + (j-1)*T + 1:P_start_index*T + (j-1)*T + T);%P
                                        p_t_index(units_index,1) = P_start_index*T + (j-1)*T + 1;
                                        p_t_index(units_index,2) = P_start_index*T + (j-1)*T + T;
                                        p_t_index(units_index,3) = units_number;
                                        units_number = units_number + 1;
                                        units_index = units_index + 1;
                                    end
                                else %The bus without unit.节点上没有发电机
                                    p_t(units_number,:) = XJ(P_start_index*T + 1:P_start_index*T + T);%P
                                    units_number = units_number + 1;
                                end
                                seta_t(i,:) = XJ(Seta_start_index*T + 1:Seta_start_index*T + T);%θ
                                seta_t_index(i,1) = Seta_start_index*T + 1;
                                seta_t_index(i,2) = Seta_start_index*T + T;
                                seta_t_index(i,3) = i;
                            end
                        else  %按照第一次记下的变量顺序即可
                            p_t = zeros(partitionData.PIUnitsNumber{end}-partitionData.PIUnitsNumber{1},T);
                            seta_t = zeros(size(seta_t_index,1),T);
                            for i = 1:size(p_t_index,1)
                                p_t(p_t_index(i,3),:) = XJ(p_t_index(i,1):p_t_index(i,2));
                            end
                            for i = 1:size(seta_t_index,1)
                                seta_t(seta_t_index(i,3),:) = XJ(seta_t_index(i,1):seta_t_index(i,2));
                            end
                        end
                        
                    elseif isequal(includeDR,'yes')
                        PINumber = partitionData.PINumber;
                        EINumber = partitionData.EINumber;
                        piecewiseNumber = SCUC_data.elasticBus.piecewiseNumber; %分段函数分的段数
                        K = SCUC_data.elasticBus.N;%弹性节点数量
                        dr_t = zeros(K,T); %弹性负荷变量dr
                        hr_t = zeros(piecewiseNumber,T,K); %辅助变量Hr,第一个参数对应分段数,第二个参数对应时段,第三个参数对应节点编号
                        %按照片区顺序
                        for i = 1:n
                            Dindex = 2*(PINumber{i+1}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量
                            Hindex = Dindex + T; 
                            %取dr和hr
                            for j = 1:EINumber{i+1}-EINumber{i}
                                %dr的行按照partitionData.allElasticityNodes中节点编号的顺序
                                dr_t(EINumber{i}-1+j,:) = XJ((j-1)*(piecewiseNumber+1)*T+1+Dindex:(j-1)*(piecewiseNumber+1)*T+T+Dindex); %dr
                                for r = 1:piecewiseNumber
                                    hr_t(r,:,EINumber{i}-1+j) = XJ((j-1)*(piecewiseNumber+1)*T+(r-1)*T+1+Hindex:(j-1)*(piecewiseNumber+1)*T+(r-1)*T+T+Hindex); %hr
                                end
                            end
                        end
                        
                        if isequal(k,1) 
                            p_t_index = []; %存储p_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引
                            seta_t_index = []; %存储seta_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引
                            %按照片区顺序
                            for i = 1:n
                                Pindex = 2*(PINumber{i}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量
                                Dindex = 2*(PINumber{i+1}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量
                                Hindex = Dindex + T; 
                                %取P和θ
                                for j = 1:PINumber{i+1}-PINumber{i}
                                    %xx的行按照partitionData.allNodes(即allNodes)中节点编号的顺序
                                    p_t(PINumber{i}-1+j,:) = XJ(2*(j-1)*T+1+Pindex:2*(j-1)*T+T+Pindex);%P
                                    seta_t(PINumber{i}-1+j,:) = XJ(2*(j-1)*T+T+1+Pindex:2*(j-1)*T+2*T+Pindex);%θ
                                    p_t_index(PINumber{i}-1+j,1) = 2*(j-1)*T+1+Pindex;
                                    p_t_index(PINumber{i}-1+j,2) = 2*(j-1)*T+T+Pindex;
                                    p_t_index(PINumber{i}-1+j,3) = PINumber{i}-1+j;
                                    seta_t_index(PINumber{i}-1+j,1) = 2*(j-1)*T+T+1+Pindex;
                                    seta_t_index(PINumber{i}-1+j,2) = 2*(j-1)*T+2*T+Pindex;
                                    seta_t_index(PINumber{i}-1+j,3) = PINumber{i}-1+j;
                                end
                            end
                        else  %按照第一次记下的变量顺序即可
                            p_t = zeros(size(p_t_index,1),T);
                            seta_t = zeros(size(seta_t_index,1),T);
                            for i = 1:size(p_t_index,1)
                                p_t(p_t_index(i,3),:) = XJ(p_t_index(i,1):p_t_index(i,2));
                            end
                            for i = 1:size(seta_t_index,1)
                                seta_t(seta_t_index(i,3),:) = XJ(seta_t_index(i,1):seta_t_index(i,2));
                            end
                        end
                        
                    else
                        dr_t = []; %弹性负荷变量dr
                        hr_t = []; %辅助变量Hr
                        for i = 1:N
                            p_t(i,:) = XJ((i-1)*2*T+1:(i-1)*2*T+T);%P
                            seta_t(i,:) = XJ((i-1)*2*T+T+1:(i-1)*2*T+2*T);%θ
                        end
                    end


3 程序结果

原文结果图:

该图和上述结果图1趋势完全一致,验证代码的可行性。
相关文章
|
21天前
|
机器学习/深度学习 边缘计算 人工智能
【无人机】采用NOMA的节能多无人机多接入边缘计算(Matlab代码实现)
【无人机】采用NOMA的节能多无人机多接入边缘计算(Matlab代码实现)
|
21天前
|
机器学习/深度学习 传感器 运维
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
|
25天前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
131 2
|
2月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
6月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
571 0
分布式爬虫框架Scrapy-Redis实战指南
|
2月前
|
NoSQL Redis
Lua脚本协助Redis分布式锁实现命令的原子性
利用Lua脚本确保Redis操作的原子性是分布式锁安全性的关键所在,可以大幅减少由于网络分区、客户端故障等导致的锁无法正确释放的情况,从而在分布式系统中保证数据操作的安全性和一致性。在将这些概念应用于生产环境前,建议深入理解Redis事务与Lua脚本的工作原理以及分布式锁的可能问题和解决方案。
114 8
|
4月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
284 67
|
7月前
|
NoSQL Java 中间件
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
本文介绍了从单机锁到分布式锁的演变,重点探讨了使用Redis实现分布式锁的方法。分布式锁用于控制分布式系统中多个实例对共享资源的同步访问,需满足互斥性、可重入性、锁超时防死锁和锁释放正确防误删等特性。文章通过具体示例展示了如何利用Redis的`setnx`命令实现加锁,并分析了简化版分布式锁存在的问题,如锁超时和误删。为了解决这些问题,文中提出了设置锁过期时间和在解锁前验证持有锁的线程身份的优化方案。最后指出,尽管当前设计已解决部分问题,但仍存在进一步优化的空间,将在后续章节继续探讨。
1006 131
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
|
3月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
912 7
|
4月前
|
缓存 监控 NoSQL
Redis设计与实现——分布式Redis
Redis Sentinel 和 Cluster 是 Redis 高可用与分布式架构的核心组件。Sentinel 提供主从故障检测与自动切换,通过主观/客观下线判断及 Raft 算法选举领导者完成故障转移,但存在数据一致性和复杂度问题。Cluster 支持数据分片和水平扩展,基于哈希槽分配数据,具备自动故障转移和节点发现机制,适合大规模高并发场景。复制机制包括全量同步和部分同步,通过复制积压缓冲区优化同步效率,但仍面临延迟和资源消耗挑战。两者各有优劣,需根据业务需求选择合适方案。

热门文章

最新文章