基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究(matlab代码)

简介: 基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究(matlab代码)

1 主要内容

程序完全复现文献《A Distributed Dual Consensus ADMM Based on Partition for DC-DOPF with Carbon Emission Trading》,建立了一个考虑碳排放交易的最优模型,首先,对测试系统(6节点或者30节点或者118节点系统)进行了分区,以便后续ADMM算法的应用,其次,构建了DC-DOPF的最优潮流模型作为主要应用场景,以发电+买卖排放配额费用之和为目标函数,考虑碳排放约束、潮流约束以及耦合约束等约束条件,程序考虑了负荷需求响应和碳排放交易,从而符合目前低碳调度的研究热点,算法方面采用ADMM算法,也就是交替方向乘子法,更加创新,而且求解的效果更好,代码质量非常高,保姆级的注释以及人性化的模块子程序,所有数据均明确可靠来源,非常方便学习!

  • 目标函数

  • 计算步骤

  • 节点系统

程序默认节点系统为118节点系统,代码如下:

FileName = 'SCUC_dat/DDOPF118.txt'; %Corresponding to the 118-bus system in literature [7];对应文献[7]中的118-bus system
可以通过修改节点系统名称来验证其他节点(6节点或者30节点)系统模型,程序已经内置了这部分代码,可以通过取消注释即可实现。
%             FileName = 'SCUC_dat/SCUC6.txt';    %Corresponding to the 6-bus System;对应文中6bus例子
%             FileName = 'SCUC_dat/SCUC30.txt'; %Corresponding to the 30-bus System;对应文中30bus例子
%             FileName = 'SCUC_dat/SCUC6-2.txt';  %Corresponding to the 6-bus System in literature [7];对应文献[7]中的6-bus system
%             FileName = 'SCUC_dat/SCUC1062-2.txt';  %Corresponding to the 1062-bus System;对应文中1062-bus例子
%             FileName = 'SCUC_dat/RTS48.txt'; %Corresponding to the RTS-48 bus system.The test system can obtain from [44];对应文中RTS0-48 bus例子


2 部分代码

if isequal(k,1) %第一次形成p_t并记下对应的区间即可
                            p_t_index = []; %存储p_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引
                            seta_t_index = []; %存储seta_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引
                            for i = 1:size(allNodes,1)
                                bus_sequence_index = find(ismember(SCUC_data.busUnits.bus_sequence,allNodes(i,1))==1); %allNodes(i,1)在SCUC_data.busUnits.bus_sequence上的索引
                                P_start_index = (PbusUnitsNumber(i,1) - PbusUnitsNumber(1,1) + i - 1); %allNodes(i,1)对应变量P前面的所有变量P和θ的总数量
                                Seta_start_index = (PbusUnitsNumber(i+1,1) - PbusUnitsNumber(1,1) + i - 1); %allNodes(i,1)对应变量θ前面的所有变量P和θ的总数量
                                if ~isempty(bus_sequence_index) %The bus with unit. 节点上有发电机
                                    for j = 1:size(SCUC_data.busUnits.unitIndex{bus_sequence_index,1},1)
                                        p_t(units_number,:) = XJ(P_start_index*T + (j-1)*T + 1:P_start_index*T + (j-1)*T + T);%P
                                        p_t_index(units_index,1) = P_start_index*T + (j-1)*T + 1;
                                        p_t_index(units_index,2) = P_start_index*T + (j-1)*T + T;
                                        p_t_index(units_index,3) = units_number;
                                        units_number = units_number + 1;
                                        units_index = units_index + 1;
                                    end
                                else %The bus without unit.节点上没有发电机
                                    p_t(units_number,:) = XJ(P_start_index*T + 1:P_start_index*T + T);%P
                                    units_number = units_number + 1;
                                end
                                seta_t(i,:) = XJ(Seta_start_index*T + 1:Seta_start_index*T + T);%θ
                                seta_t_index(i,1) = Seta_start_index*T + 1;
                                seta_t_index(i,2) = Seta_start_index*T + T;
                                seta_t_index(i,3) = i;
                            end
                        else  %按照第一次记下的变量顺序即可
                            p_t = zeros(partitionData.PIUnitsNumber{end}-partitionData.PIUnitsNumber{1},T);
                            seta_t = zeros(size(seta_t_index,1),T);
                            for i = 1:size(p_t_index,1)
                                p_t(p_t_index(i,3),:) = XJ(p_t_index(i,1):p_t_index(i,2));
                            end
                            for i = 1:size(seta_t_index,1)
                                seta_t(seta_t_index(i,3),:) = XJ(seta_t_index(i,1):seta_t_index(i,2));
                            end
                        end
                        
                    elseif isequal(includeDR,'yes')
                        PINumber = partitionData.PINumber;
                        EINumber = partitionData.EINumber;
                        piecewiseNumber = SCUC_data.elasticBus.piecewiseNumber; %分段函数分的段数
                        K = SCUC_data.elasticBus.N;%弹性节点数量
                        dr_t = zeros(K,T); %弹性负荷变量dr
                        hr_t = zeros(piecewiseNumber,T,K); %辅助变量Hr,第一个参数对应分段数,第二个参数对应时段,第三个参数对应节点编号
                        %按照片区顺序
                        for i = 1:n
                            Dindex = 2*(PINumber{i+1}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量
                            Hindex = Dindex + T; 
                            %取dr和hr
                            for j = 1:EINumber{i+1}-EINumber{i}
                                %dr的行按照partitionData.allElasticityNodes中节点编号的顺序
                                dr_t(EINumber{i}-1+j,:) = XJ((j-1)*(piecewiseNumber+1)*T+1+Dindex:(j-1)*(piecewiseNumber+1)*T+T+Dindex); %dr
                                for r = 1:piecewiseNumber
                                    hr_t(r,:,EINumber{i}-1+j) = XJ((j-1)*(piecewiseNumber+1)*T+(r-1)*T+1+Hindex:(j-1)*(piecewiseNumber+1)*T+(r-1)*T+T+Hindex); %hr
                                end
                            end
                        end
                        
                        if isequal(k,1) 
                            p_t_index = []; %存储p_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引
                            seta_t_index = []; %存储seta_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引
                            %按照片区顺序
                            for i = 1:n
                                Pindex = 2*(PINumber{i}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量
                                Dindex = 2*(PINumber{i+1}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量
                                Hindex = Dindex + T; 
                                %取P和θ
                                for j = 1:PINumber{i+1}-PINumber{i}
                                    %xx的行按照partitionData.allNodes(即allNodes)中节点编号的顺序
                                    p_t(PINumber{i}-1+j,:) = XJ(2*(j-1)*T+1+Pindex:2*(j-1)*T+T+Pindex);%P
                                    seta_t(PINumber{i}-1+j,:) = XJ(2*(j-1)*T+T+1+Pindex:2*(j-1)*T+2*T+Pindex);%θ
                                    p_t_index(PINumber{i}-1+j,1) = 2*(j-1)*T+1+Pindex;
                                    p_t_index(PINumber{i}-1+j,2) = 2*(j-1)*T+T+Pindex;
                                    p_t_index(PINumber{i}-1+j,3) = PINumber{i}-1+j;
                                    seta_t_index(PINumber{i}-1+j,1) = 2*(j-1)*T+T+1+Pindex;
                                    seta_t_index(PINumber{i}-1+j,2) = 2*(j-1)*T+2*T+Pindex;
                                    seta_t_index(PINumber{i}-1+j,3) = PINumber{i}-1+j;
                                end
                            end
                        else  %按照第一次记下的变量顺序即可
                            p_t = zeros(size(p_t_index,1),T);
                            seta_t = zeros(size(seta_t_index,1),T);
                            for i = 1:size(p_t_index,1)
                                p_t(p_t_index(i,3),:) = XJ(p_t_index(i,1):p_t_index(i,2));
                            end
                            for i = 1:size(seta_t_index,1)
                                seta_t(seta_t_index(i,3),:) = XJ(seta_t_index(i,1):seta_t_index(i,2));
                            end
                        end
                        
                    else
                        dr_t = []; %弹性负荷变量dr
                        hr_t = []; %辅助变量Hr
                        for i = 1:N
                            p_t(i,:) = XJ((i-1)*2*T+1:(i-1)*2*T+T);%P
                            seta_t(i,:) = XJ((i-1)*2*T+T+1:(i-1)*2*T+2*T);%θ
                        end
                    end


3 程序结果

原文结果图:

该图和上述结果图1趋势完全一致,验证代码的可行性。
相关文章
|
1月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
1月前
|
存储 算法 安全
如何控制上网行为——基于 C# 实现布隆过滤器算法的上网行为管控策略研究与实践解析
在数字化办公生态系统中,企业对员工网络行为的精细化管理已成为保障网络安全、提升组织效能的核心命题。如何在有效防范恶意网站访问、数据泄露风险的同时,避免过度管控对正常业务运作的负面影响,构成了企业网络安全领域的重要研究方向。在此背景下,数据结构与算法作为底层技术支撑,其重要性愈发凸显。本文将以布隆过滤器算法为研究对象,基于 C# 编程语言开展理论分析与工程实践,系统探讨该算法在企业上网行为管理中的应用范式。
75 8
|
1月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
58 1
|
25天前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
64 17
|
2月前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
288 18
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
28天前
|
存储 监控 算法
企业数据泄露风险防控视域下 Python 布隆过滤器算法的应用研究 —— 怎样防止员工私下接单,监控为例
本文探讨了布隆过滤器在企业员工行为监控中的应用。布隆过滤器是一种高效概率数据结构,具有空间复杂度低、查询速度快的特点,适用于大规模数据过滤场景。文章分析了其在网络访问监控和通讯内容筛查中的实践价值,并通过Python实现示例展示其技术优势。同时,文中指出布隆过滤器存在误判风险,需在准确性和资源消耗间权衡。最后强调构建多维度监控体系的重要性,结合技术与管理手段保障企业运营安全。
51 10
|
24天前
|
存储 监控 算法
基于 C# 的局域网计算机监控系统文件变更实时监测算法设计与实现研究
本文介绍了一种基于C#语言的局域网文件变更监控算法,通过事件驱动与批处理机制结合,实现高效、低负载的文件系统实时监控。核心内容涵盖监控机制选择(如事件触发机制)、数据结构设计(如监控文件列表、事件队列)及批处理优化策略。文章详细解析了C#实现的核心代码,并提出性能优化与可靠性保障措施,包括批量处理、事件过滤和异步处理等技术。最后,探讨了该算法在企业数据安全监控、文件同步备份等场景的应用潜力,以及未来向智能化扩展的方向,如文件内容分析、智能告警机制和分布式监控架构。
45 3
|
27天前
|
监控 算法 安全
基于 PHP 的员工电脑桌面监控软件中图像差分算法的设计与实现研究
本文探讨了一种基于PHP语言开发的图像差分算法,用于员工计算机操作行为监控系统。算法通过分块比较策略和动态阈值机制,高效检测屏幕画面变化,显著降低计算复杂度与内存占用。实验表明,相比传统像素级差分算法,该方法将处理时间缩短88%,峰值内存使用量减少70%。文章还介绍了算法在工作效率优化、信息安全防护等方面的应用价值,并分析了数据隐私保护、算法准确性及资源消耗等挑战。未来可通过融合深度学习等技术进一步提升系统智能化水平。
26 1
|
1月前
|
监控 算法 JavaScript
基于 JavaScript 图算法的局域网网络访问控制模型构建及局域网禁止上网软件的技术实现路径研究
本文探讨局域网网络访问控制软件的技术框架,将其核心功能映射为图论模型,通过节点与边表示终端设备及访问关系。以JavaScript实现DFS算法,模拟访问权限判断,优化动态策略更新与多层级访问控制。结合流量监控数据,提升网络安全响应能力,为企业自主研发提供理论支持,推动智能化演进,助力数字化管理。
54 4
|
1月前
|
监控 算法 JavaScript
公司局域网管理视域下 Node.js 图算法的深度应用研究:拓扑结构建模与流量优化策略探析
本文探讨了图论算法在公司局域网管理中的应用,针对设备互联复杂、流量调度低效及安全监控困难等问题,提出基于图论的解决方案。通过节点与边建模局域网拓扑结构,利用DFS/BFS实现设备快速发现,Dijkstra算法优化流量路径,社区检测算法识别安全风险。结合WorkWin软件实例,展示了算法在设备管理、流量调度与安全监控中的价值,为智能化局域网管理提供了理论与实践指导。
60 3

热门文章

最新文章