基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)

简介: 基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)

1 主要内容

程序复现文献《基于机器学习的短期电力负荷预测和负荷曲线聚类研究》第三章《基于改进ISODATA算法的负荷场景曲线聚类》模型,该方法不止适用于负荷聚类,同样适用于风光等可再生能源聚类,只需要改变聚类的数据即可,该方法的通用性和可创新性强。

该代码实现一种基于改进ISODATA算法的负荷场景曲线聚类方法,代码中,主要做了四种聚类算法,包括基础的K-means算法、ISODATA算法、L-ISODATA算法以及K-L-ISODATA算法,并且包含了对聚类场景以及聚类效果的评价,通过DBI的计算值综合对比评价不同方法的聚类效果,程序将四种方法均进行了实现,非常方便大家对照学习!

  • 聚类中心选取步骤

  • 核方法

2 部分代码

data_load=xlsread('日平均负荷.xls'); 
x=data_load;
k_num=0;k_num1=0;
%% 初始化
km=6;K=6;Kl=6;K3=6;%定义预期的聚类中心数
theta_N=1;% theta_N : 每一聚类中心中最少的样本数,少于此数就不作为一个独立的聚类
theta_S=1;% theta_S :一个聚类中样本距离分布的标准差
theta_c=3;% theta_c : 两聚类中心之间的最小距离,如小于此数,两个聚类进行合并
L=1;% L : 在一次迭代运算中可以和并的聚类中心的最多对数
%% K=means 方法聚类结果
[IDW,CW,sumdw,DW] = kmeans(x,km);
Clust = cell(km,1);
for i=1:km
CW1{i,1}=CW(i,:);
end
for i=1:km
    clustw1=find(IDW==i);
    Clust{i} = x(clustw1,:);
end
%% K-means 聚类结果图
for i=1:km
    figure
    subplot(2,1,1);
    plot(CW(i,:)/(max(CW(i,:))),'-');xlabel('采样点');ylabel('标幺值');axis([1 92 -inf inf])
    titlemane=strcat('k-means第',num2str(i),'聚类中心(归一化)');
    title(titlemane)
    subplot(2,1,2);
    cu=Clust{i};
    plot(cu','-');xlabel('采样点');ylabel('负荷');axis([1 92 -inf inf])
    titlemane=strcat('k-means第',num2str(i),'场景聚类');
    title(titlemane)
end
%% ISODATA聚类方法
[AA,BB]=ISODATA(x,K,theta_N,theta_S,theta_c,L);
for i=1:K
       if size(AA{i},2)==1
        k_num1=k_num1+1;
       AA{i,1}=[];
       BB{i,1}=[];
    end
end
AA(cellfun(@isempty,AA))=[];
BB(cellfun(@isempty,BB))=[];
%% ISODATA 聚类结果图
   for  i=1:K
       figure 
       subplot(2,1,1)
       plot(AA{i}/max(AA{i}));xlabel('采样点');ylabel('标幺值');axis([1 92 -inf inf])
       titlemane=strcat('ISODATA方法第',num2str(i),'类中心(归一化)');
       title(titlemane)
       subplot(2,1,2)
       cla=BB{i};
       plot(cla','-');xlabel('采样点');ylabel('负荷');axis([1 92 -inf inf])
       titlemane2=strcat('ISODATA方法第',num2str(i),'类聚类结果');
       title(titlemane2)
   end


3 程序结果


相关文章
|
4月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
216 6
|
22天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
185 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
10天前
|
算法 图形学 数据安全/隐私保护
基于NURBS曲线的数据拟合算法matlab仿真
本程序基于NURBS曲线实现数据拟合,适用于计算机图形学、CAD/CAM等领域。通过控制顶点和权重,精确表示复杂形状,特别适合真实对象建模和数据点光滑拟合。程序在MATLAB2022A上运行,展示了T1至T7的测试结果,无水印输出。核心算法采用梯度下降等优化技术调整参数,最小化误差函数E,确保迭代收敛,提供高质量的拟合效果。
|
2月前
|
存储 监控 算法
员工电脑监控屏幕场景下 Python 哈希表算法的探索
在数字化办公时代,员工电脑监控屏幕是保障信息安全和提升效率的重要手段。本文探讨哈希表算法在该场景中的应用,通过Python代码例程展示如何使用哈希表存储和查询员工操作记录,并结合数据库实现数据持久化,助力企业打造高效、安全的办公环境。哈希表在快速检索员工信息、优化系统性能方面发挥关键作用,为企业管理提供有力支持。
50 20
|
3月前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
4月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
104 1
|
4月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
106 2
|
4月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
4月前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
4月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
129 0

热门文章

最新文章