【智能算法】11种混沌映射算法+2种智能算法示范【鲸鱼WOA、灰狼GWO算法】

简介: 【智能算法】11种混沌映射算法+2种智能算法示范【鲸鱼WOA、灰狼GWO算法】

1 主要内容

混沌映射算法是我们在智能算法改进中常用到的方法,本程序充分考虑改进算法应用的便捷性,集成了11种混合映射算法,包括Singer、tent、Logistic、Cubic、chebyshev、Piecewise、sinusoidal、Sine、ICMIC、Circle、Bernoulli,基本涵盖了常用到的全部混合映射算法,并采用两种智能算法——鲸鱼WOA和灰狼GWO算法进行改进示范,得到优化前和优化后的对比结果,该程序可方便更换不同映射算法,通过两种算法示范方便新手学习,改进算法可轻松嫁接于其他智能算法中,是不可多得的学习资料!
  • 智能算法优化效果
  1. 收敛速度:算法的收敛速度是衡量其优化效果的重要指标之一。可以通过观察算法在迭代过程中适应度值的变化情况,以及达到收敛所需的迭代次数来评估其收敛速度,较快的收敛速度意味着算法能够更快地找到优化问题的解。
  2. 解的质量:优化算法的目标是找到问题的最优解或近似最优解。因此,解的质量是评估算法优化效果的另一个重要方面。可以通过比较不同算法找到的解的目标函数值、解的精度以及解的稳定性等指标来评估解的质量。
  3. 适应性:智能算法通常具有一定的自适应性,能够在不同问题和环境下进行自我调整和优化。因此,评估算法的适应性也是对比其优化效果的一个重要方面。可以通过观察算法在不同类型的问题、不同的初始条件以及不同的参数设置下的表现来评估其适应性。
  4. 鲁棒性:鲁棒性是指算法在面对噪声、干扰和不确定性时的稳定性和可靠性。评估算法的鲁棒性可以帮助了解其在实际应用中的表现。可以通过在算法中加入噪声、改变问题的约束条件或引入不确定性来观察算法的鲁棒性。
  • 说明
1.为了验证智能算法优劣,需要消除随机性的影响,因此一般考量智能算法的平均值和方差等统计指标,因此大家不要拿单一运行结果作为算法优劣的判据,当然在结果整理中可取效果较好的某次结果作为效果图。2.混沌映射算法有具体的参数限制,在应用过程中可能需要修正参数才能达到较好的效果,使用过程中建议和其他改进算法结合,如非线性惯性权重、柯西变异等,综合改进算法效果一般要优于单一方法。

2 部分代码

% initialize position vector and score for the leader
Leader_pos=zeros(1,dim);
Leader_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
% Positions=initialization(SearchAgents_no,dim,ub,lb);
Positions = repmat(lb, SearchAgents_no, 1)+ialgo(numm,SearchAgents_no,dim) .* repmat((ub-lb), SearchAgents_no, 1);
Convergence_curve=zeros(1,Max_iter);
t=0;% Loop counter
% Main loop
while tfor i=1:size(Positions,1)
        
        % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)function for each search agent
        fitness=fobj(Positions(i,:));
        
        % Update the leader
        if fitnessthis to > for maximization problem
            Leader_score=fitness; % Update alpha
            Leader_pos=Positions(i,:);
        end
        
    end


3 程序结果

4 下载链接

见下方联系方式。

相关文章
|
13天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
12天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
2月前
|
存储 算法 C++
【算法】哈希映射(C/C++)
【算法】哈希映射(C/C++)
|
3月前
|
算法 Python
群智能算法:【WOA】鲸鱼优化算法详细解读
本文详细解读了鲸鱼优化算法(WOA),这是一种受鲸鱼捕食行为启发的新兴群体智能优化算法,具有强大的全局搜索能力和快速收敛速度。文章分为五个部分,分别介绍了引言、算法原理、主要步骤、特点及Python代码实现。通过模拟鲸鱼的捕食行为,该算法能够在复杂的优化问题中找到全局最优解。
|
3月前
|
算法 Python
群智能算法:灰狼优化算法(GWO)的详细解读
在优化问题中,寻找最优解是核心目标。灰狼优化算法(GWO)受到自然界灰狼狩猎行为和社会等级结构的启发,通过模拟Alpha(头狼)、Beta(助手狼)、Delta(支配狼)和Omega(普通狼)的角色,高效搜索最优解。本文详细解析GWO的原理与步骤,并提供Python代码实现,帮助读者理解并应用这一算法。
|
19天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
6天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。