【免费】基于ADMM算法的多微网电能交互分布式运行策略(matlab代码)

简介: 【免费】基于ADMM算法的多微网电能交互分布式运行策略(matlab代码)

主要内容  

该模型为三微网电能交互共享模型,以运行成本和环境成本为目标,考虑负荷需求响应(可削减负荷和可转移负荷)、储能约束、风电约束和功率平衡约束等,利用ADMM算法进行迭代求解,实现联盟群效益的最大化,程序采用matlab+cplex求解,基本做到句句注释,具有较好的参考价值。

 部分代码  

%% ADMM算法参数设置
lambda_12=zeros(1,24);lambda_13=zeros(1,24);lambda_21=zeros(1,24);
lambda_23=zeros(1,24);lambda_31=zeros(1,24);lambda_32=zeros(1,24);%拉格朗日乘子初始化
max_k=1000;  %最大迭代次数
tolerant=1e-3;%收敛精度
rho=1e-4;%惩罚因子
k=1;%迭代次数初始化
tao=[]; %残差
P_12=zeros(max_k+1,24);P_21=zeros(max_k+1,24);P_13=zeros(max_k+1,24);
P_31=zeros(max_k+1,24);P_23=zeros(max_k+1,24);P_32=zeros(max_k+1,24);%交互量
%% 迭代
while 1
    if k==max_k 
       break; 
    end 
    [P_wt_1,P_buy_1,P_batd_1,P_batc_1,P_sell_1,P_grid_1,P_bat_1,L_e_1,L_e0_1,E_co2_1,P_12(k+1,:),P_13(k+1,:),Obj_MG1(k)]=xin1(P_21(k+1,:),P_31(k+1,:),lambda_12,lambda_13,rho);
    [P_pv_2,P_buy_2,P_batd_2,P_batc_2,P_sell_2,P_grid_2,P_bat_2,L_e_2,L_e0_2,E_co2_2,P_21(k+1,:),P_23(k+1,:),Obj_MG2(k)]=xin2(P_12(k+1,:),P_32(k+1,:),lambda_21,lambda_23,rho);
    [P_pv_3,P_buy_3,P_batd_3,P_batc_3,P_sell_3,P_grid_3,P_bat_3,L_e_3,L_e0_3,E_co2_3,P_31(k+1,:),P_32(k+1,:),Obj_MG3(k)]=xin3(P_13(k+1,:),P_23(k+1,:),lambda_31,lambda_32,rho);
    lambda_12=lambda_12+rho*(P_12(k+1,:)+P_21(k+1,:));
    lambda_13=lambda_13+rho*(P_13(k+1,:)+P_31(k+1,:));
    lambda_21=lambda_21+rho*(P_21(k+1,:)+P_12(k+1,:));
    lambda_23=lambda_23+rho*(P_23(k+1,:)+P_32(k+1,:));
    lambda_31=lambda_31+rho*(P_31(k+1,:)+P_13(k+1,:));
    lambda_32=lambda_32+rho*(P_32(k+1,:)+P_23(k+1,:));
    tao=[tao,norm(P_12(k+1,:)-P_12(k,:))+norm(P_13(k+1,:)-P_13(k,:))+norm(P_23(k+1,:)-P_23(k,:))]; %残差计算
    if tao(k)<=tolerant
       break;     %判断收敛条件
    end
    k=k+1;
end
toc
disp(['微网1的二氧化碳排放量 : ', num2str(E_co2_1),' kg']);
disp(['微网2的二氧化碳排放量 : ', num2str(E_co2_2),' kg']);
disp(['微网3的二氧化碳排放量 : ', num2str(E_co2_3),' kg']);
%% 画图
figure(1)
plot(Obj_MG1,'m','LineWidth',1.5);
hold on
plot(Obj_MG2,'r','LineWidth',1.5);
hold on
plot(Obj_MG3,'b','LineWidth',1.5);
hold on
legend('微网1','微网2','微网3');
xlabel('迭代次数/k');
ylabel('成本/元');
legend('boxoff');


 结果一览  

下载链接

相关文章
|
5天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
8天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
9天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
10天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
9天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
9天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
26 3
|
16天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
23天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
20天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。