【免费】基于ADMM算法的多微网电能交互分布式运行策略(matlab代码)

简介: 【免费】基于ADMM算法的多微网电能交互分布式运行策略(matlab代码)

主要内容  

该模型为三微网电能交互共享模型,以运行成本和环境成本为目标,考虑负荷需求响应(可削减负荷和可转移负荷)、储能约束、风电约束和功率平衡约束等,利用ADMM算法进行迭代求解,实现联盟群效益的最大化,程序采用matlab+cplex求解,基本做到句句注释,具有较好的参考价值。

 部分代码  

%% ADMM算法参数设置
lambda_12=zeros(1,24);lambda_13=zeros(1,24);lambda_21=zeros(1,24);
lambda_23=zeros(1,24);lambda_31=zeros(1,24);lambda_32=zeros(1,24);%拉格朗日乘子初始化
max_k=1000;  %最大迭代次数
tolerant=1e-3;%收敛精度
rho=1e-4;%惩罚因子
k=1;%迭代次数初始化
tao=[]; %残差
P_12=zeros(max_k+1,24);P_21=zeros(max_k+1,24);P_13=zeros(max_k+1,24);
P_31=zeros(max_k+1,24);P_23=zeros(max_k+1,24);P_32=zeros(max_k+1,24);%交互量
%% 迭代
while 1
    if k==max_k 
       break; 
    end 
    [P_wt_1,P_buy_1,P_batd_1,P_batc_1,P_sell_1,P_grid_1,P_bat_1,L_e_1,L_e0_1,E_co2_1,P_12(k+1,:),P_13(k+1,:),Obj_MG1(k)]=xin1(P_21(k+1,:),P_31(k+1,:),lambda_12,lambda_13,rho);
    [P_pv_2,P_buy_2,P_batd_2,P_batc_2,P_sell_2,P_grid_2,P_bat_2,L_e_2,L_e0_2,E_co2_2,P_21(k+1,:),P_23(k+1,:),Obj_MG2(k)]=xin2(P_12(k+1,:),P_32(k+1,:),lambda_21,lambda_23,rho);
    [P_pv_3,P_buy_3,P_batd_3,P_batc_3,P_sell_3,P_grid_3,P_bat_3,L_e_3,L_e0_3,E_co2_3,P_31(k+1,:),P_32(k+1,:),Obj_MG3(k)]=xin3(P_13(k+1,:),P_23(k+1,:),lambda_31,lambda_32,rho);
    lambda_12=lambda_12+rho*(P_12(k+1,:)+P_21(k+1,:));
    lambda_13=lambda_13+rho*(P_13(k+1,:)+P_31(k+1,:));
    lambda_21=lambda_21+rho*(P_21(k+1,:)+P_12(k+1,:));
    lambda_23=lambda_23+rho*(P_23(k+1,:)+P_32(k+1,:));
    lambda_31=lambda_31+rho*(P_31(k+1,:)+P_13(k+1,:));
    lambda_32=lambda_32+rho*(P_32(k+1,:)+P_23(k+1,:));
    tao=[tao,norm(P_12(k+1,:)-P_12(k,:))+norm(P_13(k+1,:)-P_13(k,:))+norm(P_23(k+1,:)-P_23(k,:))]; %残差计算
    if tao(k)<=tolerant
       break;     %判断收敛条件
    end
    k=k+1;
end
toc
disp(['微网1的二氧化碳排放量 : ', num2str(E_co2_1),' kg']);
disp(['微网2的二氧化碳排放量 : ', num2str(E_co2_2),' kg']);
disp(['微网3的二氧化碳排放量 : ', num2str(E_co2_3),' kg']);
%% 画图
figure(1)
plot(Obj_MG1,'m','LineWidth',1.5);
hold on
plot(Obj_MG2,'r','LineWidth',1.5);
hold on
plot(Obj_MG3,'b','LineWidth',1.5);
hold on
legend('微网1','微网2','微网3');
xlabel('迭代次数/k');
ylabel('成本/元');
legend('boxoff');


 结果一览  

下载链接

目录
打赏
0
1
1
0
55
分享
相关文章
解锁分布式文件分享的 Java 一致性哈希算法密码
在数字化时代,文件分享成为信息传播与协同办公的关键环节。本文深入探讨基于Java的一致性哈希算法,该算法通过引入虚拟节点和环形哈希空间,解决了传统哈希算法在分布式存储中的“哈希雪崩”问题,确保文件分配稳定高效。文章还展示了Java实现代码,并展望了其在未来文件分享技术中的应用前景,如结合AI优化节点布局和区块链增强数据安全。
分布式系统架构1:共识算法Paxos
本文介绍了分布式系统中实现数据一致性的重要算法——Paxos及其改进版Multi Paxos。Paxos算法由Leslie Lamport提出,旨在解决分布式环境下的共识问题,通过提案节点、决策节点和记录节点的协作,确保数据在多台机器间的一致性和可用性。Multi Paxos通过引入主节点选举机制,优化了基本Paxos的效率,减少了网络通信次数,提高了系统的性能和可靠性。文中还简要讨论了数据复制的安全性和一致性保障措施。
103 1
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
在分布式系统中,确保每个节点生成的 ID 唯一且高效至关重要。Snowflake 算法由 Twitter 开发,通过 64 位 long 型数字生成全局唯一 ID,包括 1 位标识位、41 位时间戳、10 位机器 ID 和 12 位序列号。该算法具备全局唯一性、递增性、高可用性和高性能,适用于高并发场景,如电商促销时的大量订单生成。本文介绍了使用 Go 语言的 `bwmarrin/snowflake` 和 `sony/sonyflake` 库实现 Snowflake 算法的方法。
120 1
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
分布式缓存有哪些常用的数据分片算法?
【10月更文挑战第25天】在实际应用中,需要根据具体的业务需求、数据特征以及系统的可扩展性要求等因素综合考虑,选择合适的数据分片算法,以实现分布式缓存的高效运行和数据的合理分布。
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
在YARN集群上运行部署MapReduce分布式计算框架
主要介绍了如何在YARN集群上配置和运行MapReduce分布式计算框架,包括准备数据、运行MapReduce任务、查看任务日志,并启动HistoryServer服务以便于日志查看。
96 0
探索Hadoop的三种运行模式:单机模式、伪分布式模式和完全分布式模式
在配置Hadoop集群之前,了解这三种模式的特点、适用场景和配置差异是非常重要的。这有助于用户根据个人需求和资源情况,选择最适合自己的Hadoop运行模式。在最初的学习和开发阶段,单机模式和伪分布式模式能为用户提供便利和成本效益。进而,当用户要处理大规模数据集时,完全分布式模式将是理想的选择。
368 2
|
6月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等