超级好用的C++实用库之国密sm4算法

简介: 超级好用的C++实用库之国密sm4算法

概述

国密SM4算法,全称为国家密码管理局制定的SM4分组密码算法,是中国自主设计的商用密码算法标准之一,用于数据的对称加密。由于其国产化属性和安全性,SM4广泛应用于中国国内的金融、电子政务、网络安全、通信等多个领域。在国密HTTPS协议中,SM4用于数据的加密传输,确保网络通信的安全。除此之外,它还应用于无线互联网加密、智能卡、加密芯片、以及各种需要高强度数据保护的场景。

CHP_Sm4

作为一种对称加密算法,国密SM4算法支持多种工作模式以适应不同的安全需求。其中,ECB(Electronic Codebook)和CBC(Cipher Block Chaining)是最常见的两种工作模式。

在ECB模式下,每个数据块独立地进行加密。同一个密钥下,相同明文块会被加密成相同的密文块。这也就意味着,模式不提供任何内在的数据关联性,安全性较低,容易受到重放攻击和模式识别攻击。但是,ECB模式的简单性使其在处理并行数据时速度快,易于实现。由于ECB模式的弱点,它通常不建议用于需要高度安全性的场合。但在某些特定场景下,比如加密小块的随机数据,或每次加密的数据块互不相关时,ECB模式仍可能被使用。

CBC模式通过引入一个初始化向量(Initialization Vector)和前一块的密文来影响当前块的加密过程,从而增强了安全性。每个明文块在加密前需与前一块的密文进行异或(XOR)操作,这使得相同的明文块在不同上下文中会产生不同的密文,有效抵抗模式识别和重放攻击。CBC模式要求加密数据的顺序性,解密时也需要按同样的顺序进行。CBC模式因其较好的安全性,广泛应用于需要高安全等级的通信场景,比如:网络数据传输、文件加密等。它能有效隐藏明文模式,提供较好的数据保密性和完整性保护。

为了对国密SM4算法在ECB模式、CBC模式下的加解密进行封装,方便其他模块使用,我们编写了CHP_Sm4类。每个加密或解密的接口,都有两种重载形式:一种是原地加解密,会改变原始数据,但节省内存空间;另一种需要额外的内存空间,用于存储加解密后的数据。CHP_Sm4类的头文件,可参考下面的示例代码。

#pragma once

class CHP_Sm4
{
public:
        CHP_Sm4();
        ~CHP_Sm4();

        int SetEncryptKey(unsigned char pucKey[16]);
        
        int EncryptEcb(unsigned char *pucData, int nDataLen);

        int EncryptEcb(unsigned char *pucInput, int nInputLen, unsigned char *pucOutput);

        int EncryptCbc(unsigned char *pucData, int nDataLen, unsigned char pucIV[16]);

        int EncryptCbc(unsigned char *pucInput, int nInputLen, unsigned char pucIV[16],
                unsigned char *pucOutput);

        int SetDecryptKey(unsigned char pucKey[16]);

        int DecryptEcb(unsigned char *pucData, int nDataLen);

        int DecryptEcb(unsigned char *pucInput, int nInputLen, unsigned char *pucOutput);

        int DecryptCbc(unsigned char *pucData, int nDataLen, unsigned char pucIV[16]);

        int DecryptCbc(unsigned char *pucInput, int nInputLen, unsigned char pucIV[16],
                unsigned char *pucOutput);

private:
        static unsigned char Sbox(unsigned char ucIndex);
        static unsigned int CalcLt(unsigned int uiKa);
        static unsigned int CalcF(unsigned int uiX0, unsigned int uiX1, unsigned int uiX2, unsigned int uiX3, unsigned int uiRk);
        static unsigned int CalciRK(unsigned int uiKa);
        static void SetKey(unsigned int puiSK[32], unsigned char pucKey[16]);
        static void ProcessOneRound(unsigned int puiSK[32], unsigned char pucInput[16], unsigned char pucOutput[16]);

private:
        enum ISm4CryptMode { SM4_CRYPTE_MODE_ENCRYPT, SM4_CRYPTE_MODE_DECRYPT };

        typedef struct _TSm4ContextInfo
        {
                ISm4CryptMode mode;
                unsigned int puiSK[32];
        }TSm4ContextInfo;

        TSm4ContextInfo m_ctx;
};

下面,我们逐个介绍CHP_Sm4类导出的公共接口。

SetEncryptKey:设置加密密钥。参数pucKey为加密密钥,16个字节。返回值为0表示成功,其他为错误码。

EncryptEcb:Ecb模式就地加密数据,函数返回后,pucData为加密过的数据。参数pucData为要加密的数据,参数nDataLen为要加密的数据的长度。返回值为0表示成功,其他为错误码。

EncryptEcb:Ecb模式加密数据。pucData为加密过的数据。参数pucData为要加密的数据,参数nDataLen为要加密的数据的长度,参数pucOutput为加密后的数据,用于传出。返回值为0表示成功,其他为错误码。

EncryptCbc:Cbc模式就地加密数据,函数返回后,pucData为加密过的数据。参数pucData为要加密的数据,参数nDataLen为要加密的数据的长度,参数pucIV为加密向量。返回值为0表示成功,其他为错误码。

EncryptCbc:Cbc模式加密数据。参数pucData为要加密的数据,参数nDataLen为要加密的数据的长度,参数pucIV为加密向量,参数pucOutput为加密后的数据,用于传出。返回值为0表示成功,其他为错误码。

SetDecryptKey:设置解密密钥。参数pucKey为解密密钥,16个字节。返回值为0表示成功,其他为错误码。

DecryptEcb:Ecb模式就地解密数据,函数返回后,pucData为解密过的数据。参数pucData为要解密的数据,参数nDataLen为要解密的数据的长度。返回值为0表示成功,其他为错误码。

DecryptEcb:Ecb模式解密数据。参数pucData为要解密的数据,参数nDataLen为要解密的数据的长度,参数pucOutput为加密后的数据,用于传出。返回值为0表示成功,其他为错误码。

DecryptCbc:Cbc模式就地解密数据,函数返回后,pucData为解密过的数据。参数pucData为要解密的数据,参数nDataLen为要解密的数据的长度,参数pucIV为解密向量。返回值为0表示成功,其他为错误码。

DecryptCbc:Cbc模式解密数据。参数pucInput为要解密的数据,参数nInputLen为要解密的数据的长度,参数pucIV为解密向量,参数pucOutput为解密后的数据。返回值为0表示成功,其他为错误码。


总结

国密SM4算法作为中国自主知识产权的密码技术,旨在提高国家信息安全水平,减少对外部密码技术的依赖,并且在保障信息安全的同时,促进了国产密码技术的发展和应用。SM4属于对称加密算法,与之并列的还有非对称加密算法SM2、哈希函数SM3等,它们共同构成了中国商用密码体系的重要组成部分。


相关文章
|
12天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
8天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2522 18
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
8天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1525 15
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
4天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
10天前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
596 14
|
1月前
|
运维 Cloud Native Devops
一线实战:运维人少,我们从 0 到 1 实践 DevOps 和云原生
上海经证科技有限公司为有效推进软件项目管理和开发工作,选择了阿里云云效作为 DevOps 解决方案。通过云效,实现了从 0 开始,到现在近百个微服务、数百条流水线与应用交付的全面覆盖,有效支撑了敏捷开发流程。
19283 30
|
10天前
|
人工智能 自动驾驶 机器人
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
过去22个月,AI发展速度超过任何历史时期,但我们依然还处于AGI变革的早期。生成式AI最大的想象力,绝不是在手机屏幕上做一两个新的超级app,而是接管数字世界,改变物理世界。
498 49
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
|
1月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
18845 20
|
1月前
|
Rust Apache 对象存储
Apache Paimon V0.9最新进展
Apache Paimon V0.9 版本即将发布,此版本带来了多项新特性并解决了关键挑战。Paimon自2022年从Flink社区诞生以来迅速成长,已成为Apache顶级项目,并广泛应用于阿里集团内外的多家企业。
17530 13
Apache Paimon V0.9最新进展
|
3天前
|
云安全 存储 运维
叮咚!您有一份六大必做安全操作清单,请查收
云安全态势管理(CSPM)开启免费试用
368 4
叮咚!您有一份六大必做安全操作清单,请查收