神经网络决策过程可视化:AI眼中马云、马化腾、李彦宏谁最有吸引力?

简介: 神经网络在进行图像分类时如何做决策?The Hive的机器学习工程师利用开源的grad-cam项目,预测神经网络决策和图像分析时的焦点,发现神经网络关注的部分实际上与人十分类似。但是,也是有意外的地方。

神经网络所学会的“吸引力”是什么?

在判断一张图片是否安全时,神经网络看的是哪些部分?

使用grad-cam,我们探索了模型的预测过程,对于不同类型的图片,包括动作/静态、暴力、吸引力、年龄、种族等等。

30ee523cd9534609d9f8b90cab3b66c72c5adc7d

很显然,在上面展示的图片中,吸引力模型关注的是身体而非面部。有趣的是,模型在训练过程中没有接触任何明确定义的边界框,但即使如此,仍然学会了定位人体

487fe62813cd5bf2b12a67a04786cb0b0e382030

这个模型使用200k图像做训练,标记由Hive团队完成,一共分为3个类别:有吸引力(hot)、中立(neutral)、没有吸引力。

然后,所有得分会综合在一起,创建一个从0到10的评分等级。分类器地址:https://thehive.ai/demo/attractiveness

举个例子,如果让模型来判断BAT各家掌门人的吸引力得分,将会是这个样子:

cec9dd79c1a4966f12d0598a1d833d7759670e4c

关键的想法是,在全局池化前将logit层应用到最后一个卷积层。这会创建一个map,显示网络决策过程中每个像素的重要性。

fd36177a220b65e8f0e30f398cd47e5ea6d5cb1f

一个穿西装的人位于图片正中(上图右),表明这是电视节目,而不是商业广告。电视节目/商业广告模型,很好地展示了grad-CAM发现的模型决策背后的意外原因。另一方面,模型也能证实了我们的预期,比如左边那幅单板滑雪的例子(上图左)。

a60dce52c1169027ea2202679890afde2abaf20e

上面是动画节目分类器的结果。很有意思的是,在Bart & Morty中,最重要的部分是边缘(上图左)和背景(上图右),令人颇为意外。

e4a93881e99175dde94445f15edb903e5411a1b7

CAM & GradCam:分类时,神经网络正在看什么

类别激活地图(CAM)由Zhou[2]首先开发,能够显示网络正在看什么。对于每个类别,CAM能表明这个类别中最重要的部分。

后来,Ramprasaath对CAM做了扩展,让它在不需要做任何更改的情况下,能够适用于更广泛的架构。具体说,grad-CAM可以处理全连接层和更复杂的问题,如问题回答。幸运的是,我们完全不需要修改网络来计算grad-CAM。


最近,grad-CAM++ Chattopadhyay[4]进一步扩展了这种方法,提高输出热图的精度。Grad-CAM++能够更好地处理类别的多个实例,并突出显示整个类别,而不仅仅是最显著的部分。Grad-CAM++使用正偏导数的加权组合来实现这一点。

TensorFlow实现及代码

22eb4cc9cafbfb3eeef568e35ed433771d177401

这只返回一个num_classes元素的数组,其中只有预测类别的logit非零。这定义了损失。

62dc589857f397a9f8da78f2ccf15df3326b224a

然后,计算相对于网络的最后一个卷积层的损失的导数,并对这些梯度进行正则化。

c91626831c52fc6f4965a0afc5ba37c8cd967b5e

运行图,计算我们输入的最后一个卷积层。

16efbded827c006a34ad30914464407deead770e

计算权重作为每个10x10网格的梯度值的均值(假设输入大小为299x299)。有2048个权重,因为我们使用的网络在10x10的最终卷积层上有2048个输出通道。

8256cc10004b993191cd638767a4f7c48267dfd0

创建cam 10x10粗略输出,作为平均梯度值和最终卷积层的加权和。

054f7b4a580c23e3500778d61a8a15665fcad21c

将cam输入一个RELU,只接收这个类别的正向建议。然后,将粗略cam输出调整为输入大小并混合显示。

最后,主要函数获取TensorFlow Slim模型的定义和预处理函数。用这些算法计算grad-CAM输出,并将其与输入照片混合。在下面的代码中,我们使用softmax概率最大的类别作为grad_cam的输入。例如:

48fe15dbe324633373aa200fab8cdea401b65a1a

该模型首选预测酒精为99%,赌博只有0.4%。不过,通过将预测类别从酒类转为赌博,我们可以看到,尽管类别概率很低,但模型仍然可以清楚地指出图像中的赌博元素(见右图)。


原文发布时间为:2018-01-12

本文作者:费欣欣

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号

原文链接:神经网络决策过程可视化:AI眼中马云、马化腾、李彦宏谁最有吸引力?

相关文章
|
3月前
|
人工智能 自动驾驶 算法
智能时代的伦理困境:AI决策的道德边界
在人工智能技术飞速发展的今天,我们面临着前所未有的伦理挑战。本文探讨了AI决策中的道德边界问题,分析了技术发展与人类价值观之间的冲突,并提出了建立AI伦理框架的必要性和可能路径。通过深入剖析具体案例,揭示了AI技术在医疗、司法等领域的应用中所引发的道德争议,强调了在追求技术进步的同时,必须审慎考虑其对社会伦理的影响,确保科技发展服务于人类的福祉而非成为新的困扰源。
|
3月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
72 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
5天前
|
人工智能 自然语言处理 调度
Casevo:开源的社会传播模拟系统,基于 AI 模拟人类认知、决策和社会交互,预测社会传播现象
Casevo 是中国传媒大学推出的开源社会传播模拟系统,结合大语言模型和多智能体技术,支持复杂社会网络建模与动态交互,适用于新闻传播、社会计算等领域。
52 22
Casevo:开源的社会传播模拟系统,基于 AI 模拟人类认知、决策和社会交互,预测社会传播现象
|
3月前
|
存储 人工智能 搜索推荐
解锁AI新境界:LangChain+RAG实战秘籍,让你的企业决策更智能,引领商业未来新潮流!
【10月更文挑战第4天】本文通过详细的实战演练,指导读者如何在LangChain框架中集成检索增强生成(RAG)技术,以提升大型语言模型的准确性与可靠性。RAG通过整合外部知识源,已在生成式AI领域展现出巨大潜力。文中提供了从数据加载到创建检索器的完整步骤,并探讨了RAG在企业问答系统、决策支持及客户服务中的应用。通过构建知识库、选择合适的嵌入模型及持续优化系统,企业可以充分利用现有数据,实现高效的商业落地。
141 6
|
3月前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
64 0
|
16天前
|
机器学习/深度学习 数据采集 人工智能
AI在用户行为分析中的应用:实现精准洞察与决策优化
AI在用户行为分析中的应用:实现精准洞察与决策优化
77 15
|
18天前
|
存储 人工智能 安全
微软推出Copilot Vision AI助手赋能网页浏览与决策
微软推出Copilot Vision AI助手赋能网页浏览与决策
|
2月前
|
人工智能 数据挖掘 数据库
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
|
2月前
|
人工智能 数据库 决策智能
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
本文为阿里云瑶池数据库「拥抱Data+AI」系列连载第1篇,聚焦电商行业痛点,探讨如何利用数据与AI技术及分析方法论,为电商注入新活力与效能。文中详细介绍了阿里云Data+AI解决方案,涵盖Zero-ETL、实时在线分析、混合负载资源隔离、长周期数据归档等关键技术,帮助企业应对数据在线重刷、实时分析、成本优化等挑战,实现智能化转型。
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
|
2月前
|
关系型数据库 分布式数据库 数据库
云栖大会|从数据到决策:AI时代数据库如何实现高效数据管理?
在2024云栖大会「海量数据的高效存储与管理」专场,阿里云瑶池讲师团携手AMD、FunPlus、太美医疗科技、中石化、平安科技以及小赢科技、迅雷集团的资深技术专家深入分享了阿里云在OLTP方向的最新技术进展和行业最佳实践。