在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了。实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以很容易地进行编程处理。为了统一离线和实时计算,一般情况下,我们都希望将离线和实时计算的数据源的集合统一起来作为输入,然后将数据的流向分别经由实时系统和离线分析系统,分别进行分析处理,这时我们可以考虑将数据源(如使用Flume收集日志)直接连接一个消息中间件,如Kafka,可以整合Flume+Kafka,Flume作为消息的Producer,生产的消息数据(日志数据、业务请求数据等等)发布到Kafka中,然后通过订阅的方式,使用Storm的Topology作为消息的Consumer,在Storm集群中分别进行如下两个需求场景的处理:
- 直接使用Storm的Topology对数据进行实时分析处理
- 整合Storm+HDFS,将消息处理后写入HDFS进行离线分析处理
实时处理,只要开发满足业务需要的Topology即可,不做过多说明。这里,我们主要从安装配置Kafka、Storm,以及整合Kafka+Storm、整合Storm+HDFS、整合Kafka+Storm+HDFS这几点来配置实践,满足上面提出的一些需求。配置实践使用的软件包如下所示:
- zookeeper-3.4.5.tar.gz
- kafka_2.9.2-0.8.1.1.tgz
- apache-storm-0.9.2-incubating.tar.gz
- hadoop-2.2.0.tar.gz
程序配置运行所基于的操作系统为CentOS 5.11。
Kafka安装配置
我们使用3台机器搭建Kafka集群:
在安装Kafka集群之前,这里没有使用Kafka自带的Zookeeper,而是独立安装了一个Zookeeper集群,也是使用这3台机器,保证Zookeeper集群正常运行。
首先,在h1上准备Kafka安装文件,执行如下命令:
3 |
tar xvzf kafka_2.9.2-0.8.1.1.tgz |
4 |
ln -s /usr/ local /kafka_2.9.2-0.8.1.1 /usr/ local /kafka |
5 |
chown -R kafka:kafka /usr/ local /kafka_2.9.2-0.8.1.1 /usr/ local /kafka |
修改配置文件/usr/local/kafka/config/server.properties,修改如下内容:
2 |
zookeeper.connect=h1:2181,h2:2181,h3:2181/kafka |
这里需要说明的是,默认Kafka会使用ZooKeeper默认的/路径,这样有关Kafka的ZooKeeper配置就会散落在根路径下面,如果你有其他的应用也在使用ZooKeeper集群,查看ZooKeeper中数据可能会不直观,所以强烈建议指定一个chroot路径,直接在zookeeper.connect配置项中指定:
1 |
zookeeper.connect=h1:2181,h2:2181,h3:2181/kafka |
而且,需要手动在ZooKeeper中创建路径/kafka,使用如下命令连接到任意一台ZooKeeper服务器:
1 |
cd /usr/ local /zookeeper |
在ZooKeeper执行如下命令创建chroot路径:
这样,每次连接Kafka集群的时候(使用--zookeeper
选项),也必须使用带chroot路径的连接字符串,后面会看到。
然后,将配置好的安装文件同步到其他的h2、h3节点上:
1 |
scp -r /usr/ local /kafka_2.9.2-0.8.1.1/ h2:/usr/ local / |
2 |
scp -r /usr/ local /kafka_2.9.2-0.8.1.1/ h3:/usr/ local / |
最后,在h2、h3节点上配置,执行如下命令:
2 |
ln -s /usr/ local /kafka_2.9.2-0.8.1.1 /usr/ local /kafka |
3 |
chown -R kafka:kafka /usr/ local /kafka_2.9.2-0.8.1.1 /usr/ local /kafka |
并修改配置文件/usr/local/kafka/config/server.properties内容如下所示:
因为Kafka集群需要保证各个Broker的id在整个集群中必须唯一,需要调整这个配置项的值(如果在单机上,可以通过建立多个Broker进程来模拟分布式的Kafka集群,也需要Broker的id唯一,还需要修改一些配置目录的信息)。
在集群中的h1、h2、h3这三个节点上分别启动Kafka,分别执行如下命令:
1 |
bin/kafka-server-start.sh /usr/ local /kafka/config/server.properties & |
可以通过查看日志,或者检查进程状态,保证Kafka集群启动成功。
我们创建一个名称为my-replicated-topic5的Topic,5个分区,并且复制因子为3,执行如下命令:
1 |
bin/kafka-topics.sh --create --zookeeper h1:2181,h2:2181,h3:2181/kafka --replication-factor 3 --partitions 5 --topic my-replicated-topic5 |
查看创建的Topic,执行如下命令:
1 |
bin/kafka-topics.sh --describe --zookeeper h1:2181,h2:2181,h3:2181/kafka --topic my-replicated-topic5 |
结果信息如下所示:
1 |
Topic:my-replicated-topic5 PartitionCount:5 ReplicationFactor:3 Configs: |
2 |
Topic: my-replicated-topic5 Partition: 0 Leader: 0 Replicas: 0,2,1 Isr: 0,2,1 |
3 |
Topic: my-replicated-topic5 Partition: 1 Leader: 0 Replicas: 1,0,2 Isr: 0,2,1 |
4 |
Topic: my-replicated-topic5 Partition: 2 Leader: 2 Replicas: 2,1,0 Isr: 2,0,1 |
5 |
Topic: my-replicated-topic5 Partition: 3 Leader: 0 Replicas: 0,1,2 Isr: 0,2,1 |
6 |
Topic: my-replicated-topic5 Partition: 4 Leader: 2 Replicas: 1,2,0 Isr: 2,0,1 |
上面Leader、Replicas、Isr的含义如下:
3 |
Replicas : 复制该分区log的节点列表 |
4 |
Isr : "in-sync" replicas,当前活跃的副本列表(是一个子集),并且可能成为Leader |
我们可以通过Kafka自带的bin/kafka-console-producer.sh和bin/kafka-console-consumer.sh脚本,来验证演示如果发布消息、消费消息。
在一个终端,启动Producer,并向我们上面创建的名称为my-replicated-topic5的Topic中生产消息,执行如下脚本:
1 |
bin/kafka-console-producer.sh --broker-list h1:9092,h2:9092,h3:9092 --topic my-replicated-topic5 |
在另一个终端,启动Consumer,并订阅我们上面创建的名称为my-replicated-topic5的Topic中生产的消息,执行如下脚本:
1 |
bin/kafka-console-consumer.sh --zookeeper h1:2181,h2:2181,h3:2181/kafka --from-beginning --topic my-replicated-topic5 |
可以在Producer终端上输入字符串消息行,然后回车,就可以在Consumer终端上看到消费者消费的消息内容。
也可以参考Kafka的Producer和Consumer的Java API,通过API编码的方式来实现消息生产和消费的处理逻辑。
Storm安装配置
Storm集群也依赖Zookeeper集群,要保证Zookeeper集群正常运行。Storm的安装配置比较简单,我们仍然使用下面3台机器搭建:
首先,在h1节点上,执行如下命令安装:
3 |
tar xvzf apache-storm-0.9.2-incubating. tar .gz |
4 |
ln -s /usr/ local /apache-storm-0.9.2-incubating /usr/ local /storm |
5 |
chown -R storm:storm /usr/ local /apache-storm-0.9.2-incubating /usr/ local /storm |
然后,修改配置文件conf/storm.yaml,内容如下所示:
01 |
storm.zookeeper.servers: |
05 |
storm.zookeeper.port: 2181 |
09 |
supervisor.slots.ports: |
15 |
storm.local.dir: "/tmp/storm" |
将配置好的安装文件,分发到其他节点上:
1 |
scp -r /usr/ local /apache-storm-0.9.2-incubating/ h2:/usr/ local / |
2 |
scp -r /usr/ local /apache-storm-0.9.2-incubating/ h3:/usr/ local / |
最后,在h2、h3节点上配置,执行如下命令:
2 |
ln -s /usr/ local /apache-storm-0.9.2-incubating /usr/ local /storm |
3 |
chown -R storm:storm /usr/ local /apache-storm-0.9.2-incubating /usr/ local /storm |
Storm集群的主节点为Nimbus,从节点为Supervisor,我们需要在h1上启动Nimbus服务,在从节点h2、h3上启动Supervisor服务:
为了方便监控,可以启动Storm UI,可以从Web页面上监控Storm Topology的运行状态,例如在h2上启动:
这样可以通过访问http://h2:8080/来查看Topology的运行状况。
整合Kafka+Storm
消息通过各种方式进入到Kafka消息中间件,比如可以通过使用Flume来收集日志数据,然后在Kafka中路由暂存,然后再由实时计算程序Storm做实时分析,这时我们就需要将在Storm的Spout中读取Kafka中的消息,然后交由具体的Spot组件去分析处理。实际上,apache-storm-0.9.2-incubating这个版本的Storm已经自带了一个集成Kafka的外部插件程序storm-kafka,可以直接使用,例如我使用的Maven依赖配置,如下所示:
02 |
< groupId >org.apache.storm</ groupId > |
03 |
< artifactId >storm-core</ artifactId > |
04 |
< version >0.9.2-incubating</ version > |
05 |
< scope >provided</ scope > |
08 |
< groupId >org.apache.storm</ groupId > |
09 |
< artifactId >storm-kafka</ artifactId > |
10 |
< version >0.9.2-incubating</ version > |
13 |
< groupId >org.apache.kafka</ groupId > |
14 |
< artifactId >kafka_2.9.2</ artifactId > |
15 |
< version >0.8.1.1</ version > |
18 |
< groupId >org.apache.zookeeper</ groupId > |
19 |
< artifactId >zookeeper</ artifactId > |
22 |
< groupId >log4j</ groupId > |
23 |
< artifactId >log4j</ artifactId > |
下面,我们开发了一个简单WordCount示例程序,从Kafka读取订阅的消息行,通过空格拆分出单个单词,然后再做词频统计计算,实现的Topology的代码,如下所示:
001 |
package org.shirdrn.storm.examples; |
003 |
import java.util.Arrays; |
004 |
import java.util.HashMap; |
005 |
import java.util.Iterator; |
006 |
import java.util.Map; |
007 |
import java.util.Map.Entry; |
008 |
import java.util.concurrent.atomic.AtomicInteger; |
010 |
import org.apache.commons.logging.Log; |
011 |
import org.apache.commons.logging.LogFactory; |
013 |
import storm.kafka.BrokerHosts; |
014 |
import storm.kafka.KafkaSpout; |
015 |
import storm.kafka.SpoutConfig; |
016 |
import storm.kafka.StringScheme; |
017 |
import storm.kafka.ZkHosts; |
018 |
import backtype.storm.Config; |
019 |
import backtype.storm.LocalCluster; |
020 |
import backtype.storm.StormSubmitter; |
021 |
import backtype.storm.generated.AlreadyAliveException; |
022 |
import backtype.storm.generated.InvalidTopologyException; |
023 |
import backtype.storm.spout.SchemeAsMultiScheme; |
024 |
import backtype.storm.task.OutputCollector; |
025 |
import backtype.storm.task.TopologyContext; |
026 |
import backtype.storm.topology.OutputFieldsDeclarer; |
027 |
import backtype.storm.topology.TopologyBuilder; |
028 |
import backtype.storm.topology.base.BaseRichBolt; |
029 |
import backtype.storm.tuple.Fields; |
030 |
import backtype.storm.tuple.Tuple; |
031 |
import backtype.storm.tuple.Values; |
033 |
public class MyKafkaTopology { |
035 |
public static class KafkaWordSplitter extends BaseRichBolt { |
037 |
private static final Log LOG = LogFactory.getLog(KafkaWordSplitter. class ); |
038 |
private static final long serialVersionUID = 886149197481637894L; |
039 |
private OutputCollector collector; |
042 |
public void prepare(Map stormConf, TopologyContext context, |
043 |
OutputCollector collector) { |
044 |
this .collector = collector; |
048 |
public void execute(Tuple input) { |
049 |
String line = input.getString( 0 ); |
050 |
LOG.info( "RECV[kafka -> splitter] " + line); |
051 |
String[] words = line.split( "\\s+" ); |
052 |
for (String word : words) { |
053 |
LOG.info( "EMIT[splitter -> counter] " + word); |
054 |
collector.emit(input, new Values(word, 1 )); |
056 |
collector.ack(input); |
060 |
public void declareOutputFields(OutputFieldsDeclarer declarer) { |
061 |
declarer.declare( new Fields( "word" , "count" )); |
066 |
public static class WordCounter extends BaseRichBolt { |
068 |
private static final Log LOG = LogFactory.getLog(WordCounter. class ); |
069 |
private static final long serialVersionUID = 886149197481637894L; |
070 |
private OutputCollector collector; |
071 |
private Map<String, AtomicInteger> counterMap; |
074 |
public void prepare(Map stormConf, TopologyContext context, |
075 |
OutputCollector collector) { |
076 |
this .collector = collector; |
077 |
this .counterMap = new HashMap<String, AtomicInteger>(); |
081 |
public void execute(Tuple input) { |
082 |
String word = input.getString( 0 ); |
083 |
int count = input.getInteger( 1 ); |
084 |
LOG.info( "RECV[splitter -> counter] " + word + " : " + count); |
085 |
AtomicInteger ai = this .counterMap.get(word); |
087 |
ai = new AtomicInteger(); |
088 |
this .counterMap.put(word, ai); |
091 |
collector.ack(input); |
092 |
LOG.info( "CHECK statistics map: " + this .counterMap); |
096 |
public void cleanup() { |
097 |
LOG.info( "The final result:" ); |
098 |
Iterator<Entry<String, AtomicInteger>> iter = this .counterMap.entrySet().iterator(); |
099 |
while (iter.hasNext()) { |
100 |
Entry<String, AtomicInteger> entry = iter.next(); |
101 |
LOG.info(entry.getKey() + "\t:\t" + entry.getValue().get()); |
107 |
public void declareOutputFields(OutputFieldsDeclarer declarer) { |
108 |
declarer.declare( new Fields( "word" , "count" )); |
112 |
public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException { |
113 |
String zks = "h1:2181,h2:2181,h3:2181" ; |
114 |
String topic = "my-replicated-topic5" ; |
115 |
String zkRoot = "/storm" ; |
118 |
BrokerHosts brokerHosts = new ZkHosts(zks); |
119 |
SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot, id); |
120 |
spoutConf.scheme = new SchemeAsMultiScheme( new StringScheme()); |
121 |
spoutConf.forceFromStart = false ; |
122 |
spoutConf.zkServers = Arrays.asList( new String[] { "h1" , "h2" , "h3" }); |
123 |
spoutConf.zkPort = 2181 ; |
125 |
TopologyBuilder builder = new TopologyBuilder(); |
126 |
builder.setSpout( "kafka-reader" , new KafkaSpout(spoutConf), 5 ); |
127 |
builder.setBolt( "word-splitter" , new KafkaWordSplitter(), 2 ).shuffleGrouping( "kafka-reader" ); |
128 |
builder.setBolt( "word-counter" , new WordCounter()).fieldsGrouping( "word-splitter" , new Fields( "word" )); |
130 |
Config conf = new Config(); |
132 |
String name = MyKafkaTopology. class .getSimpleName(); |
133 |
if (args != null && args.length > 0 ) { |
135 |
conf.put(Config.NIMBUS_HOST, args[ 0 ]); |
136 |
conf.setNumWorkers( 3 ); |
137 |
StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology()); |
139 |
conf.setMaxTaskParallelism( 3 ); |
140 |
LocalCluster cluster = new LocalCluster(); |
141 |
cluster.submitTopology(name, conf, builder.createTopology()); |
上面程序,在本地调试(使用LocalCluster)不需要输入任何参数,提交到实际集群中运行时,需要传递一个参数,该参数为Nimbus的主机名称。
通过Maven构建,生成一个包含依赖的single jar文件(不要把Storm的依赖包添加进去),例如storm-examples-0.0.1-SNAPSHOT.jar,在提交Topology程序到Storm集群之前,因为用到了Kafka,需要拷贝一下依赖jar文件到Storm集群中的lib目录下面:
1 |
cp /usr/ local /kafka/libs/kafka_2.9.2-0.8.1.1.jar /usr/ local /storm/lib/ |
2 |
cp /usr/ local /kafka/libs/scala-library-2.9.2.jar /usr/ local /storm/lib/ |
3 |
cp /usr/ local /kafka/libs/metrics-core-2.2.0.jar /usr/ local /storm/lib/ |
4 |
cp /usr/ local /kafka/libs/snappy-java-1.0.5.jar /usr/ local /storm/lib/ |
5 |
cp /usr/ local /kafka/libs/zkclient-0.3.jar /usr/ local /storm/lib/ |
6 |
cp /usr/ local /kafka/libs/log4j-1.2.15.jar /usr/ local /storm/lib/ |
7 |
cp /usr/ local /kafka/libs/slf4j-api-1.7.2.jar /usr/ local /storm/lib/ |
8 |
cp /usr/ local /kafka/libs/jopt-simple-3.2.jar /usr/ local /storm/lib/ |
然后,就可以提交我们开发的Topology程序了:
1 |
bin/storm jar /home/storm/storm-examples-0.0.1-SNAPSHOT.jar org.shirdrn.storm.examples.MyKafkaTopology h1 |
可以通过查看日志文件(logs/目录下)或者Storm UI来监控Topology的运行状况。如果程序没有错误,可以使用前面我们使用的Kafka Producer来生成消息,就能看到我们开发的Storm Topology能够实时接收到并进行处理。
上面Topology实现代码中,有一个很关键的配置对象SpoutConfig,配置属性如下所示:
1 |
spoutConf.forceFromStart = false ; |
该配置是指,如果该Topology因故障停止处理,下次正常运行时是否从Spout对应数据源Kafka中的该订阅Topic的起始位置开始读取,如果forceFromStart=true,则之前处理过的Tuple还要重新处理一遍,否则会从上次处理的位置继续处理,保证Kafka中的Topic数据不被重复处理,是在数据源的位置进行状态记录。
整合Storm+HDFS
Storm实时计算集群从Kafka消息中间件中消费消息,有实时处理需求的可以走实时处理程序,还有需要进行离线分析的需求,如写入到HDFS进行分析。下面实现了一个Topology,代码如下所示:
001 |
package org.shirdrn.storm.examples; |
003 |
import java.text.DateFormat; |
004 |
import java.text.SimpleDateFormat; |
005 |
import java.util.Date; |
006 |
import java.util.Map; |
007 |
import java.util.Random; |
009 |
import org.apache.commons.logging.Log; |
010 |
import org.apache.commons.logging.LogFactory; |
011 |
import org.apache.storm.hdfs.bolt.HdfsBolt; |
012 |
import org.apache.storm.hdfs.bolt.format.DefaultFileNameFormat; |
013 |
import org.apache.storm.hdfs.bolt.format.DelimitedRecordFormat; |
014 |
import org.apache.storm.hdfs.bolt.format.FileNameFormat; |
015 |
import org.apache.storm.hdfs.bolt.format.RecordFormat; |
016 |
import org.apache.storm.hdfs.bolt.rotation.FileRotationPolicy; |
017 |
import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy; |
018 |
import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy.TimeUnit; |
019 |
import org.apache.storm.hdfs.bolt.sync.CountSyncPolicy; |
020 |
import org.apache.storm.hdfs.bolt.sync.SyncPolicy; |
022 |
import backtype.storm.Config; |
023 |
import backtype.storm.LocalCluster; |
024 |
import backtype.storm.StormSubmitter; |
025 |
import backtype.storm.generated.AlreadyAliveException; |
026 |
import backtype.storm.generated.InvalidTopologyException; |
027 |
import backtype.storm.spout.SpoutOutputCollector; |
028 |
import backtype.storm.task.TopologyContext; |
029 |
import backtype.storm.topology.OutputFieldsDeclarer; |
030 |
import backtype.storm.topology.TopologyBuilder; |
031 |
import backtype.storm.topology.base.BaseRichSpout; |
032 |
import backtype.storm.tuple.Fields; |
033 |
import backtype.storm.tuple.Values; |
034 |
import backtype.storm.utils.Utils; |
036 |
public class StormToHDFSTopology { |
038 |
public static class EventSpout extends BaseRichSpout { |
040 |
private static final Log LOG = LogFactory.getLog(EventSpout. class ); |
041 |
private static final long serialVersionUID = 886149197481637894L; |
042 |
private SpoutOutputCollector collector; |
044 |
private String[] records; |
047 |
public void open(Map conf, TopologyContext context, |
048 |
SpoutOutputCollector collector) { |
049 |
this .collector = collector; |
051 |
records = new String[] { |
052 |
"10001 ef2da82d4c8b49c44199655dc14f39f6 4.2.1 HUAWEI G610-U00 HUAWEI 2 70:72:3c:73:8b:22 2014-10-13 12:36:35" , |
053 |
"10001 ffb52739a29348a67952e47c12da54ef 4.3 GT-I9300 samsung 2 50:CC:F8:E4:22:E2 2014-10-13 12:36:02" , |
054 |
"10001 ef2da82d4c8b49c44199655dc14f39f6 4.2.1 HUAWEI G610-U00 HUAWEI 2 70:72:3c:73:8b:22 2014-10-13 12:36:35" |
060 |
public void nextTuple() { |
062 |
DateFormat df = new SimpleDateFormat( "yyyy-MM-dd_HH-mm-ss" ); |
063 |
Date d = new Date(System.currentTimeMillis()); |
064 |
String minute = df.format(d); |
065 |
String record = records[rand.nextInt(records.length)]; |
066 |
LOG.info( "EMIT[spout -> hdfs] " + minute + " : " + record); |
067 |
collector.emit( new Values(minute, record)); |
071 |
public void declareOutputFields(OutputFieldsDeclarer declarer) { |
072 |
declarer.declare( new Fields( "minute" , "record" )); |
078 |
public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException { |
080 |
RecordFormat format = new DelimitedRecordFormat() |
081 |
.withFieldDelimiter( " : " ); |
084 |
SyncPolicy syncPolicy = new CountSyncPolicy( 1000 ); |
087 |
FileRotationPolicy rotationPolicy = new TimedRotationPolicy( 1 .0f, TimeUnit.MINUTES); |
089 |
FileNameFormat fileNameFormat = new DefaultFileNameFormat() |
090 |
.withPath( "/storm/" ).withPrefix( "app_" ).withExtension( ".log" ); |
092 |
HdfsBolt hdfsBolt = new HdfsBolt() |
094 |
.withFileNameFormat(fileNameFormat) |
095 |
.withRecordFormat(format) |
096 |
.withRotationPolicy(rotationPolicy) |
097 |
.withSyncPolicy(syncPolicy); |
099 |
TopologyBuilder builder = new TopologyBuilder(); |
100 |
builder.setSpout( "event-spout" , new EventSpout(), 3 ); |
101 |
builder.setBolt( "hdfs-bolt" , hdfsBolt, 2 ).fieldsGrouping( "event-spout" , new Fields( "minute" )); |
103 |
Config conf = new Config(); |
105 |
String name = StormToHDFSTopology. class .getSimpleName(); |
106 |
if (args != null && args.length > 0 ) { |
107 |
conf.put(Config.NIMBUS_HOST, args[ 0 ]); |
108 |
conf.setNumWorkers( 3 ); |
109 |
StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology()); |
111 |
conf.setMaxTaskParallelism( 3 ); |
112 |
LocalCluster cluster = new LocalCluster(); |
113 |
cluster.submitTopology(name, conf, builder.createTopology()); |
上面的处理逻辑,可以对HdfsBolt进行更加详细的配置,如FileNameFormat、SyncPolicy、FileRotationPolicy(可以设置在满足什么条件下,切出一个新的日志,如可以指定多长时间切出一个新的日志文件,可以指定一个日志文件大小达到设置值后,再写一个新日志文件),更多设置可以参考storm-hdfs,。
上面代码在打包的时候,需要注意,使用storm-starter自带的Maven打包配置,可能在将Topology部署运行的时候,会报错,可以使用maven-shade-plugin这个插件,如下配置所示:
02 |
< groupId >org.apache.maven.plugins</ groupId > |
03 |
< artifactId >maven-shade-plugin</ artifactId > |
04 |
< version >1.4</ version > |
06 |
< createDependencyReducedPom >true</ createDependencyReducedPom > |
10 |
< phase >package</ phase > |
17 |
implementation = "org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" /> |
19 |
implementation = "org.apache.maven.plugins.shade.resource.ManifestResourceTransformer" > |
20 |
< mainClass ></ mainClass > |
整合Kafka+Storm+HDFS
上面分别对整合Kafka+Storm和Storm+HDFS做了实践,可以将后者的Spout改成前者的Spout,从Kafka中消费消息,在Storm中可以做简单处理,然后将数据写入HDFS,最后可以在Hadoop平台上对数据进行离线分析处理。下面,写了一个简单的例子,从Kafka消费消息,然后经由Storm处理,写入到HDFS存储,代码如下所示:
001 |
package org.shirdrn.storm.examples; |
003 |
import java.util.Arrays; |
004 |
import java.util.Map; |
006 |
import org.apache.commons.logging.Log; |
007 |
import org.apache.commons.logging.LogFactory; |
008 |
import org.apache.storm.hdfs.bolt.HdfsBolt; |
009 |
import org.apache.storm.hdfs.bolt.format.DefaultFileNameFormat; |
010 |
import org.apache.storm.hdfs.bolt.format.DelimitedRecordFormat; |
011 |
import org.apache.storm.hdfs.bolt.format.FileNameFormat; |
012 |
import org.apache.storm.hdfs.bolt.format.RecordFormat; |
013 |
import org.apache.storm.hdfs.bolt.rotation.FileRotationPolicy; |
014 |
import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy; |
015 |
import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy.TimeUnit; |
016 |
import org.apache.storm.hdfs.bolt.sync.CountSyncPolicy; |
017 |
import org.apache.storm.hdfs.bolt.sync.SyncPolicy; |
019 |
import storm.kafka.BrokerHosts; |
020 |
import storm.kafka.KafkaSpout; |
021 |
import storm.kafka.SpoutConfig; |
022 |
import storm.kafka.StringScheme; |
023 |
import storm.kafka.ZkHosts; |
024 |
import backtype.storm.Config; |
025 |
import backtype.storm.LocalCluster; |
026 |
import backtype.storm.StormSubmitter; |
027 |
import backtype.storm.generated.AlreadyAliveException; |
028 |
import backtype.storm.generated.InvalidTopologyException; |
029 |
import backtype.storm.spout.SchemeAsMultiScheme; |
030 |
import backtype.storm.task.OutputCollector; |
031 |
import backtype.storm.task.TopologyContext; |
032 |
import backtype.storm.topology.OutputFieldsDeclarer; |
033 |
import backtype.storm.topology.TopologyBuilder; |
034 |
import backtype.storm.topology.base.BaseRichBolt; |
035 |
import backtype.storm.tuple.Fields; |
036 |
import backtype.storm.tuple.Tuple; |
037 |
import backtype.storm.tuple.Values; |
039 |
public class DistributeWordTopology { |
041 |
public static class KafkaWordToUpperCase extends BaseRichBolt { |
043 |
private static final Log LOG = LogFactory.getLog(KafkaWordToUpperCase. class ); |
044 |
private static final long serialVersionUID = -5207232012035109026L; |
045 |
private OutputCollector collector; |
048 |
public void prepare(Map stormConf, TopologyContext context, |
049 |
OutputCollector collector) { |
050 |
this .collector = collector; |
054 |
public void execute(Tuple input) { |
055 |
String line = input.getString( 0 ).trim(); |
056 |
LOG.info( "RECV[kafka -> splitter] " + line); |
057 |
if (!line.isEmpty()) { |
058 |
String upperLine = line.toUpperCase(); |
059 |
LOG.info( "EMIT[splitter -> counter] " + upperLine); |
060 |
collector.emit(input, new Values(upperLine, upperLine.length())); |
062 |
collector.ack(input); |
066 |
public void declareOutputFields(OutputFieldsDeclarer declarer) { |
067 |
declarer.declare( new Fields( "line" , "len" )); |
072 |
public static class RealtimeBolt extends BaseRichBolt { |
074 |
private static final Log LOG = LogFactory.getLog(KafkaWordToUpperCase. class ); |
075 |
private static final long serialVersionUID = -4115132557403913367L; |
076 |
private OutputCollector collector; |
079 |
public void prepare(Map stormConf, TopologyContext context, |
080 |
OutputCollector collector) { |
081 |
this .collector = collector; |
085 |
public void execute(Tuple input) { |
086 |
String line = input.getString( 0 ).trim(); |
087 |
LOG.info( "REALTIME: " + line); |
088 |
collector.ack(input); |
092 |
public void declareOutputFields(OutputFieldsDeclarer declarer) { |
098 |
public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException { |
101 |
String zks = "h1:2181,h2:2181,h3:2181" ; |
102 |
String topic = "my-replicated-topic5" ; |
103 |
String zkRoot = "/storm" ; |
105 |
BrokerHosts brokerHosts = new ZkHosts(zks); |
106 |
SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot, id); |
107 |
spoutConf.scheme = new SchemeAsMultiScheme( new StringScheme()); |
108 |
spoutConf.forceFromStart = false ; |
109 |
spoutConf.zkServers = Arrays.asList( new String[] { "h1" , "h2" , "h3" }); |
110 |
spoutConf.zkPort = 2181 ; |
113 |
RecordFormat format = new DelimitedRecordFormat() |
114 |
.withFieldDelimiter( "\t" ); |
115 |
SyncPolicy syncPolicy = new CountSyncPolicy( 1000 ); |
116 |
FileRotationPolicy rotationPolicy = new TimedRotationPolicy( 1 .0f, TimeUnit.MINUTES); |
117 |
FileNameFormat fileNameFormat = new DefaultFileNameFormat() |
118 |
.withPath( "/storm/" ).withPrefix( "app_" ).withExtension( ".log" ); |
119 |
HdfsBolt hdfsBolt = new HdfsBolt() |
121 |
.withFileNameFormat(fileNameFormat) |
122 |
.withRecordFormat(format) |
123 |
.withRotationPolicy(rotationPolicy) |
124 |
.withSyncPolicy(syncPolicy); |
127 |
TopologyBuilder builder = new TopologyBuilder(); |
128 |
builder.setSpout( "kafka-reader" , new KafkaSpout(spoutConf), 5 ); |
129 |
builder.setBolt( "to-upper" , new KafkaWordToUpperCase(), 3 ).shuffleGrouping( "kafka-reader" ); |
130 |
builder.setBolt( "hdfs-bolt" , hdfsBolt, 2 ).shuffleGrouping( "to-upper" ); |
131 |
builder.setBolt( "realtime" , new RealtimeBolt(), 2 ).shuffleGrouping( "to-upper" ); |
134 |
Config conf = new Config(); |
135 |
String name = DistributeWordTopology. class .getSimpleName(); |
136 |
if (args != null && args.length > 0 ) { |
137 |
String nimbus = args[ 0 ]; |
138 |
conf.put(Config.NIMBUS_HOST, nimbus); |
139 |
conf.setNumWorkers( 3 ); |
140 |
StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology()); |
142 |
conf.setMaxTaskParallelism( 3 ); |
143 |
LocalCluster cluster = new LocalCluster(); |
144 |
cluster.submitTopology(name, conf, builder.createTopology()); |
上面代码中,名称为to-upper的Bolt将接收到的字符串行转换成大写以后,会将处理过的数据向后面的hdfs-bolt、realtime这两个Bolt各发一份拷贝,然后由这两个Bolt分别根据实际需要(实时/离线)单独处理。
打包后,在Storm集群上部署并运行这个Topology:
1 |
bin/storm jar ~/storm-examples-0.0.1-SNAPSHOT.jar org.shirdrn.storm.examples.DistributeWordTopology h1 |
可以通过Storm UI查看Topology运行情况,可以查看HDFS上生成的数据。